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HARMONIC GAUSS MAP AND HOPF FIBRATIONS

Dong-SooNG HAN AND EuN-Hwi LEE

ABSTRACT. A Gauss map of m-dimensional distribution on a Riemannian manifold
M is called a harmonic Gauss map if it is a harmonic map from the manifold into
its Grassmann bundle G, (T M) of m-dimensional tangent subspace. We calculate
the tension field of the Gauss map of m-dimensional distribution and especially show
that the Hopf fibrations on §4"+3 are the harmonic Gauss map of 3-dimensional
distribution.

1. Introduction

To find an optimal vector fields and distributions on the round spheres is very
interesting subject. Since a vector field on a Riemannian manifold M is a map from
M to its tangent bundle T'M as a graph, we can think about the best vector fields
on M in two ways; the volume[5] and energy{10}.

In [5] they showed that the Hopf vector field on S as a graph in the unit tangent
bundle with the Sasaki metric have the minimal volume in its homology class and
no others. On higher dimensional spheres the Hopf vector fields are critical points of
the volume functional but not even local minimum. By the another way, the Hopf
vector fields on S?"*! are harmonic maps from the sphere into the unit tangent
bundle US?"t1 ie. the critical points of the energy functional [6]. However these
are not energy minimizer since harmonic maps from spheres to compact manifolds
are unstable.

Consider the another Hopf fibrations. These are not a vector fields, but 3-
dimensional or 7-dimensional distribution on the round spheres. A m-plane distri-
bution on a Riemannian manifold M assigns to each point p € M a m-dimensional
subspace of the tangent space at p. Another way to view a m-plane distribution is a
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section of the Grassmann bundle G,,,(T M), or as the immersion ¢ : M — G,,(TM),
given by the graph of the section. We call this the Gauss map of m-dimensional dis-
tribution. Hence the Hopf fibrations on S4"*3 are the Gauss map of 3-dimensional
distribution from §47*3 to G3(T'S4"*3). In this paper we will show that the Hopf
fibrations on S%**3 is harmonic as a graph in its Grassmann bundle of 3-dimensional
tangent subspace. This work is the generalization of [6].

On the other hand, Ruh-Vilms[11] proved that the Gauss map of an isometric
immersion f : M*¥ — R™ is harmonic if and only if f has parallel mean curvature
vector. In his paper the Gauss map assigns to a point p € M the k dimensional
subspace of R™ obtained from the parallel translation of f.T,M to the origin. It
thus takes values in Grassmann bundle Gi(n), endowed with an O(n)-invariant
Riemannian metric. This work is generalized such that a submanifold of an Einstein
space has a harmonic Gauss map if and only if its mean curvature field is parallel
[12].

In this paper we want to prove the following theorem.
Main Theorem. The Hopf fibrations on S*™*3 are the harmonic Gauss maps.

First we need a harmonic equation of Gauss map of m-dimensional distribution to
find the best distribution. The notion of harmonicity of these Gauss maps requires
some Riemannian metric on the fibre bundles G,,(TM). In section 2 we will see
the geometry of Grassmann bundle[9]. Section 3 is devoted to set up the tension
field of Gauss map of m-dimensional distribution. In section 4 we will prove the

main theorem.

2. The geometry of Grassmannian bundle

Let M™ be a Riemannian manifold with m-dimensional distribution . Denote
its O(n)-bundle of orthonormal frames by

O(n)— M
on which live the canonical form and Levi-Civita connection, respectively,

0 =61, w=(ws), ws=-wh.
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Throughout this paper we use the following index conventions
1<4,5,k<m, m+1<a8,7v<n, 1<ABCD<n

where m is the dimension of the distribution, 1 < m < n. The structure equations
are

do = —wh AOP, dwf = —wi Aw§ +QF, (1)
and the curvature forms Q4 is given by
1
QA = §RgCD0C’ /\0D

where the R4, satisfy the usual symmetry relations of the Riemann curvature
tensor.

Let
T:Gn(TM) > M

denote the Grassmann bundle over M of m-dimensional tangent subspaces of TM.
It is a fibre bundle over M associated to O(M) with standard fibre the Grassmann
manifold

Gm(n) = 0(n)/O(m) x O(n —m)

on which O(n) acts on the left by multiplication. Since there exists a local cross
section of the principal fibre bundle

O(m) x O(n — m) — O(n) — G(TM),

we can pull the canonical forms #4 and connection form w” down to get local

forms on G, (T'M). Then we can use this method to give a Riemannian metric on
Gn(TM).

Proposition 1[9,13]. The quadratic tensor
a2 =3 02+ Yo,
i 1,0

is globally defined metric tensor on G, (T M)

Let uy,- - ,u, denote the standard basis of R™ and for the origin of G,,(n) we
choose the subspace of R™ spanned by uy,--- , U, which denote

Oo=ui A-- Nup,.
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If U € G,,,(TM) is an open subset containing o and
u:U — O(M)
is any local section, then
{pAlp? =u 0t if A=A, o' =u'wlif A=p=(ai)}

is an orthonormal coframe from ds® on U. From the structure equation of O(M),
we find that the pull-back by u* of the forms

1
90'3 = wg + §R?ABWZ>
1 .
oy = §R?BA9A = -8, p=(ai), (2)

Qoly‘ = (Saﬁw;: + (51'ng7 M= (ai)’ v= (ﬂ])

gives the Levi-Civita connection forms of ds® with respect to this orthonormal
coframe field.

3. Tension field of Gauss map

Let ¢ : M — G.,(M) be a Gauss map of m-dimensional distribution. Define F£
by

V' (e*) = D FF6”. 3)
B=1
If we take the exterior differentiation of (3) and use the structure equations (1) we
get;
> (dFg + FRpf — FGwg) A0 = 0.
B

Thus, by the Cartan lemma we have the fundamental tensor F%, of mapping 1
such that

> _Fgcb® =dFg + Fgpg — FAug. (4)
C
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We define IIf =3 4 g ¢ F£-0% ® € ® e 4 to be the second fundamental form of
the mapping, and the trace of 7(¥) = > g Fi's ® e4 to be the tension of the map
Y. When 7(¢) =0, ¢ is called a harmonic map [1,2][8].

By using the equation [2] and [4], we can calculate the tangential part of tension
field 77 = 3, Fhgea and the vertical part of tension field 7V = Y Fgpe,,u =
(ai). Using the Christoffel symbols we can write wf = ['4-0C.

Proposition 2. Let i be a Gauss map of m-dimensional distribution from M to
Gm(TM). o is harmonic if and only if

7 ZZ Z TsRiapea =0,

A i,B,«x

V= ZF?BB,M = (o),
1
where 3 T8¢ = dlgp + Topwi + Fszﬁ rewk.
Proof. We can find that
Ff = g, Fh= L34 = (ai).
Hence by [2] and [4] the covariant derivative of the tensor Fj is

> Fjc6° = dFg + FRoh + Fhop — Fhwp
C

1 o ) o3
= wg + §RiABwa 2F'LBR1,AD9 - wg‘
Thus
Fgo = Z R pToc — RiacT s
2
and so

> Fip =R4pThp.
B
By the same calculation,
Y Fpob6C = dFg + FRoh + Fpolt — Fhwh
c
=dl'% + 5 28 + T (Bapwl + 6ijw§) — TIHwh

_d].—‘ -+ RcheC‘J{‘F Bw +Fszﬁ F'LDwB



60 DONG-SOONG HAN AND EUN-HWI LEE

Since
D T806C = dTg — Towh + To%wi + TP,
C

Fpp= ZUF?BB)N = (ou).

The 7H and 7V have the following meaning. First,
=2 Fizea,
B.A

i o
E , TopRiaBea,
B,Ai,a

=- Z (FzBR(ea’el)eBaeA)eA7
B,Ai,a

= — E(R(VEB €, ei)eB)7

B,i

= — Z trace R(V.e;, €;)%,

where V. ea = [dgec. Second, we will use the notation of [12]. Let pt be
the orthogonal projection from the section of TM to FL and V denotes the F--
component of the Levi-Civita connection V of (M, g) and Vp= is defined by
pr (’U) va (Vx’l)).
If V2 is rough Laplacian such that V2 =3 5V, V., — vveBeB,
DV e) =200 (Vs Venp™ = Vv enp®)(en),
i i B
= Ves(Veppt)(e:)) = (Vepp™ (Vegei))]

i, B
- erses (04 (€5)) = (V5. entd)]
= Z es (P (Veges)) +p (vesvesez) +p (VVeBeBez)]
B

V
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Theorem 3. 1 is a harmonic map if and only if
Z( trace R(V,e',e))H =0, VZpt|z=0.

Hence this result is a generalization of the tension field equation of the unit vector
fields[6].

4. Harmonicity of Hopf Fibrations in §4"*3

Let C be the Complex numbers, H the Quaternions and Ca the Cayley numbers.
The Hopf fibrations are

St 8%+l _, CP™ = Complex projective n space,
S§3 84n+3 _, FP™ = Quaternionic projective n space,

§7 8% - S8,

This fibrations have many beautiful properties. For example, their fibres are par-
allel in the sense of having constant distance from one another [4]. This actually
characterizes the Hopf fibrations among all fibrations of round spheres by great
subspheres, as was proved by [3] and other many papers.

In the 3-dimensional fibrations in $47+3, this admit a Sasakian 3-stucture {ej, e,
e3} [7). Hence this three structure is mutually orthogonal and satisfies the conditions

le1, e2] = 2e3, [e2, €3] = 2ey, [63,61] = 2es.

This means that

Veiei =0

vezel = €3 = "vel €2,
ve382 =€ = —V€263)
Vel €3 = €9 = —Vesel.

Hence as in the case of [6], we can choose a standard basis

{&i,éant1 = €1,€4n12 = €2,84n43 =€3},0=1,---4n
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such that e, ez, e3 are Sasakian 3-structure and {é;, - - - €4, } is the horizontal lift of
the normal unitary basis {f;} of HP™, ie. Vy,f; =0 and

Ifa; = faivr, Jfai = faive, K fai = faivs

where I, J, K are the Quaternionic structure. Also

Veua€1 = €ait2, Ve, .61 = —€ut1, Ve, .61 = €siya, Veg,,01 = —8443,
Vesi1€2 = €413, Ve, .62 = —€sira, Ve, 2= €441, Ve, 0= &4y,
Ves163 = €4ita, Vey,,,€3= €4it3, Ve, .63 = —€442, Ve, 3= €441

Using these formulae of covariant derivatives, we can calculate the tension field
of 1 in §"*3 and show that its horizontal and vertical components both vanish.
The horizontal component is

3 4n+3

=Y > (R(Ve,es e0)éx)

=1 k=1

= Z(ei, éx)Ve,ei — (ér, Ve ei)e;
= Zveiei =0.

We now compute the vertical component.

3
V= Z(V2 J')(‘31)

+
= Z Z VCBVEBP VVéBéBpL)(ei)
B_

i

= Z[ 2V, s(p ( ep€i)) + pl(vés Vegei) + pl(vVeBéBe‘i)]
i,B

Therefore we conclude the following theorem.
Theorem 4. The Hopf fibrations on S *3 are the harmonic Gauss maps.

In [6] they proved that on S® a smooth unit vector field ¢ is a harmonic map into
the unit tangent bundle US® with the Sasaki metric if and only if it is the tangent
vector field of the Hopf fibration. In S7 we do not know about that.
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