AN INTEGRAL FORMULA ON CONTACT CR-SUBMANIFOLDS OF AN ODD-DIMENSIONAL UNIT SPHERE

Jung-Hwan Kwon

ABSTRACT. In this paper, we study an (n+1)-dimensional compact, orientable, minimal contact CR-submanifold of (n-1) ontact CR-dimension in a (2m+1)-dimensional unit sphere S^{2m+1} in terms of integral formula.

1. Introduction

Let S^{2m+1} be a (2m+1)-dimensional unit sphere, that is,

$$S^{2m+1} = \{ z \in \mathbb{C}^{m+1} \ : \ \|z\| = 1 \}.$$

For any point $z \in S^{2m+1}$ we put $\xi = Jz$, where J denotes the almost complex structure of \mathbb{C}^{m+1} . We consider the orthogonal projection $\pi: T_z\mathbb{C}^{m+1} \to T_zS^{2m+1}$. Putting $\phi = \pi \circ J$, we can see that the aggregate (ϕ, ξ, η, g) is a Sasakian structure on S^{2m+1} , where η is a 1-form dual to ξ and g the standard metric tensor field on S^{2m+1} . So S^{2m+1} can be considered as a Sasakian manifold of constant ϕ -sectional curvature 1, that is, of constant curvature 1 (cf. [11]).

Let M be an (n+1)-dimensional submanifold tangent to the structure vector field ξ of S^{2m+1} and denote by \mathcal{D}_x the ϕ -invariant subspace $\phi T_x M \cap T_x M$ of the tangent space $T_x M$ of M at x in M. Then ξ cannot be contained in \mathcal{D}_x at any point x in M (see section 2). If there is a non-zero vector U which is orthogonal to ξ and contained in the complementary orthogonal subspace \mathcal{D}_x^{\perp} to \mathcal{D}_x in $T_x M$, then ϕU must be normal to M. Thus the assumption $\dim \mathcal{D}_x^{\perp}$ being constant and greater than or equal to 2 at each point x in M yields that M can be dealt with a contact CR-submanifold in the sense of Yano-Kon [11].

Received by the editors January 22, 1998 and, in revised form April 30, 1998.

¹⁹⁹¹ Mathematics Subject Classifications. 53C40, 53C42.

 $Key\ words\ and\ phrases.$ Contact CR-submanifpld, Odd-dimensional unit sphere, Sasakian manifold, Minimal.

In the present paper we assume that $dim\mathcal{D}_x = n-1$, that is, $dim\mathcal{D}_x^{\perp} = 2$ at each point x in M and determine such submanifolds. Manifolds, submanifolds, geometric objects and mappings we discuss in this paper will be assumed to be differentiable and of class C^{∞} .

Recently, Kwon and Pak [8] proved the following:

Theorem A. Let M be an (n+1)-dimensional contact CR-submanifold of (n-1) contact CR-dimension in a (2m+1)-dimensional unit sphere S^{2m+1} . If $A_1F = FA_1$ and N_1 is parallel with respect to the normal connection, then M is locally a product $M_1 \times M_2$, where M_1 and M_2 belong to some odd-dimensional spheres, $N_1 := \phi U$ and A_1 is the shape operator corresponding to N_1 .

The purpose of the present paper is to give another characterization of an (n+1)-dimensional contact CR-submanifold of (n-1) contact CR-dimension immersed in a (2m+1)-dimensional unit sphere S^{2m+1} by using the following integral formula due to Yano [10]:

$$\int_{M} \left\{ Ric(X,X) + \frac{1}{2} \|\mathcal{L}_{X}g\|^{2} - \|\nabla X\|^{2} - (divX)^{2} \right\} * 1 = 0, \tag{1.1}$$

where X is an arbitrary tangent vector field on M, \mathcal{L}_X the Lie derivative with respect to X, ∇ the Riemannian connection induced on M, *1 the volume element of M and ||Y|| the length with respect to the Riemannian metric of a vector field Y on M.

2. Preliminaries

Let \overline{M} be a (2m+1)-dimensional almost contact metric manifold with structure (ϕ, ξ, η, g) . Then by definition it follows that

$$\phi^{2}X = -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1, g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi)$$
 (2.1)

for any vector fields X, Y tangent to \overline{M} . We consider a Riemannian manifold isometrically immersed in \overline{M} with induced metric tensor field g.

First of all we note that an n-dimensional submanifold normal to the structure vector field ξ of \overline{M} is anti-invariant with respect to ϕ , that is, $\phi T_x M \subset T_x M^{\perp}$ for each point x of M, and $m \geq n$ (for details, see Yano-Kon [11]).

In the sequel we assume that M is an (n+1)-dimensional submanifold tangent to the structure vector field ξ of a (2m+1)-dimensional almost contact metric manifold \overline{M} . We now denote by \mathcal{D}_x the ϕ -invariant subspace defined by $T_xM\cap\phi T_xM$ and by \mathcal{D}_x^{\perp} the complementary orthogonal to \mathcal{D}_x in T_xM . Then the sturcture vector field ξ is contained in \mathcal{D}_x^{\perp} . In fact, if $\xi \in \mathcal{D}_x$, then there is a vector field X tangent to M such that $\xi = \phi X$, from which applying the operator ϕ and using (2.1), we have $X = \eta(X)\xi$. Thus it follows that $\xi = 0$, which is a contradiction. Hence $\xi \in \mathcal{D}_x^{\perp}$ at each point x of M. Moreover by definition we can easily see that $\phi \mathcal{D}_x^{\perp} \subset T_xM^{\perp}$ for each point x of M.

If the ϕ -invariant subspace \mathcal{D}_x has constant dimension for x in M, then M is called a contact CR-submanifold (cf. [1], [11]) and the constant is called contact CR-dimension of M (see Kwon and Pak [8]).

3. Fundamental properties of contact CR-submanifolds

Let M be an (n+1)-dimensional contact CR-submanifold of (n-1) contact CR-dimension in a (2m+1)-dimensional almost contact metric manifold \overline{M} . Then by definition $\dim \mathcal{D}_x^{\perp} = 2$ for each point x in M, and so there is a unit vector field U contained in \mathcal{D}^{\perp} which is orthogonal to ξ . Since $\phi \mathcal{D}^{\perp} \subset TM^{\perp}$, ϕU is a unit normal vector field to M, which will be denoted by N_1 , that is,

$$N_1 = \phi U. \tag{3.1}$$

Moreover it is clear that $\phi TM \subset TM \oplus Span\{N_1\}$. Hence we have, for any tangent vector field X and for a local orthonormal basis $\{N_{\alpha}, \ \alpha = 1, \ldots, p\}$ (p = 2m - n) of normal vectors to M, the following decomposition in tangential and normal components:

$$\phi X = FX + u^{1}(X)N_{1}, \tag{3.2}$$

$$\phi N_{\alpha} = -U_{\alpha} + PN_{\alpha}, \quad \alpha = 1, \dots, p. \tag{3.3}$$

It is easily shown that F and P are skew-symmetric linear endomorphisms acting on T_xM and T_xM^{\perp} , respectively. Since the structure vector field ξ is tangent to M, (2.1) implies

$$g(FU_{\alpha}, X) = -u^{1}(X)g(N_{1}, PN_{\alpha}), \qquad (3.4)$$

$$g(U_{\alpha}, U_{\beta}) = \delta_{\alpha\beta} - g(PN_{\alpha}, PN_{\beta}). \tag{3.5}$$

We also have

$$g(U_{\alpha}, X) = u^{1}(X)\delta_{1\alpha} \tag{3.6}$$

and consequently

$$g(U_1, X) = u^1(X), \quad U_{\alpha} = 0, \quad \alpha = 2, \dots, p.$$
 (3.7)

Furthermore from (3.2) it is clear that

$$F\xi = 0$$
, $u^{1}(\xi) = 0$, $FU = 0$, $u^{1}(U) = 1$. (3.8)

Next, applying ϕ to (3.1) and using (2.1) and (3.3), we have

$$U_1 = U, \quad PN_1 = 0. \tag{3.9}$$

Applying ϕ to (3.2) and using (2.1), (3.2), (3.3) and (3.9), we also have

$$F^{2}X = -X + \eta(X)\xi + u^{1}(X)U, \quad u^{1}(FX) = 0.$$
(3.10)

On the other hand, it follows from (3.3), (3.7) and (3.9) that

$$\phi N_1 = -U, \quad \phi N_\alpha = PN_\alpha, \quad \alpha = 2, \dots, p. \tag{3.11}$$

and moreover we may put

$$PN_{\alpha} = \sum_{\beta=2}^{p} P_{\alpha\beta} N_{\beta}, \quad \alpha = 2, \dots, p,$$
 (3.12)

where $(P_{\alpha\beta})$ is a skew-symmetric matrix which satisfies

$$\sum_{\beta=2}^{p} P_{\alpha\beta} P_{\beta\gamma} = -\delta_{\alpha\gamma}. \tag{3.13}$$

We denote by $\overline{\nabla}$ and ∇ the Levi-Civita connection on \overline{M} and M, respectively and denote by D the normal connection induced from $\overline{\nabla}$ in the normal bundle TM^{\perp} of M. The Gauss and Weingartan equations are

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y), \tag{3.14}$$

$$\overline{\nabla}_X N_\alpha = -A_\alpha X + D_X N_\alpha, \quad \alpha = 1, \dots, p$$
(3.15)

for any vector fields X, Y tangent to M. Here h denotes the second fundamental form and A_{α} is the shape operator corresponding to N_{α} . They are related by

$$h(X,Y) = \sum_{\alpha=1}^{p} g(A_{\alpha}X, Y) N_{\alpha}.$$

Furthermore we put

$$D_X N_\alpha = \sum_{\beta=1}^p s_{\alpha\beta}(X) N_\beta, \tag{3.16}$$

where $(s_{\alpha\beta})$ is the skew-symmetric matrix of connection forms of D. Finally, the equation of Gauss, Codazzi and Ricci are respectively given as follows (cf. [2,5,8]):

$$\overline{R}(X,Y)Z = R(X,Y)Z + \sum_{\alpha} \{g(A_{\alpha}X,Z)A_{\alpha}Y - g(A_{\alpha}Y,Z)A_{\alpha}X\},$$
(3.17)

$$g(\overline{R}(X,Y)Z,N_{\alpha}) = g((\nabla_X A_{\alpha})Y - (\nabla_Y A_{\alpha})X,Z) + \sum_{\beta} \{g(A_{\beta}Y,Z)s_{\beta\alpha}(X) - g(A_{\beta}X,Z)s_{\beta\alpha}(Y)\},$$
(3.18)

$$g(\overline{R}(X,Y)N_{\alpha},N_{\beta}) = g(R^{\perp}(X,Y)N_{\alpha},N_{\beta}) + g([A_{\beta},A_{\alpha}]X,Y)$$
(3.19)

for any vector fields X, Y, Z tangent to M, where \overline{R} and R denote the Riemannian curvature tensor of \overline{M} and M, respectively and R^{\perp} is the curvature tensor of the normal connection D.

4. Main results

In this section we specialize to the case of an ambient Sasakian manifold \overline{M} , that is,

$$\overline{\nabla}_X \xi = \phi X,\tag{4.1}$$

$$(\overline{\nabla}_X \phi)Y = -g(X, Y)\xi + \eta(Y)X. \tag{4.2}$$

Then, by differentiating (3.2) and (3.11) covariantly and by comparing the tangential and normal parts, we have

$$(\nabla_Y F)X = -g(Y, X)\xi + \eta(X)Y - g(A_1Y, X)U + u^1(X)A_1Y, \tag{4.3}$$

$$(\nabla_Y u^1)X = g(FA_1Y, X), \tag{4.4}$$

$$\nabla_X U = F A_1 X,\tag{4.5}$$

$$g(A_{\alpha}U, X) = -\sum_{\beta=2}^{p} s_{1\beta}(X) P_{\beta\alpha}, \quad \alpha = 2, \dots, p(=2m-n).$$
 (4.6)

On the other hand, since ξ is tangent to M, (4.1) gives

$$\nabla_X \xi = FX,\tag{4.7}$$

$$g(A_1\xi, X) = u^1(X)$$
, that is, $A_1\xi = U$, (4.8)

$$A_{\alpha}\xi = 0, \quad \alpha = 2, \dots, p. \tag{4.9}$$

We suppose that \overline{M} is a Sasakian manifold of constant ϕ -sectional curvature 1, that is, of constant curvature 1 and that N_1 is parallel with respect to the normal connection D. Hence it follows from (3.16) that

$$s_{1\beta} = 0, \quad \beta = 2, \dots, p,$$
 (4.10)

which and (4.6) give

$$A_{\alpha}U = 0, \quad \alpha = 2, \dots, p. \tag{4.11}$$

Next, since the curvature tensor \overline{R} has the form

$$\overline{R}(\overline{X},\overline{Y})\overline{Z} = g(\overline{Y},\overline{Z})\overline{X} - g(\overline{X},\overline{Z})\overline{Y}$$

for \overline{X} , \overline{Y} , \overline{Z} tangent to \overline{M} , the equations (3.17), (3.18) and (3.19) imply

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + \sum_{\alpha} \{g(A_{\alpha}Y,Z)A_{\alpha}X - g(A_{\alpha}X,Z)A_{\alpha}Y\}, \qquad (4.12)$$

$$(\nabla_X A_1)Y - (\nabla_Y A_1)X = 0,$$
 (4.13)

$$g(R^{\perp}(X,Y)N_{\alpha},N_{\beta}) = g([A_{\beta},A_{\alpha}]X,Y), \tag{4.14}$$

$$Ric(X,Y) = ng(X,Y) + \sum_{\alpha} \{ (trA_{\alpha})g(A_{\alpha}X,Y) - g(A_{\alpha}^{2}X,Y) \}$$
 (4.15)

with the help of (4.10).

As an application of the integral formula (1.1), we will prove

Theorem 1. Let M be an (n+1)-dimensional compact, orientable, minimal contact CR-submanifold of (n-1) contact CR-dimension in S^{2m+1} . If the normal vector field N_1 is parallel with respect to the normal connection, then

$$\int_{M} tr A_1^2 * 1 \ge (n+1) Vol(M). \tag{4.16}$$

Proof. Putting X = U in (1.1) gives

$$\int_{M} \left\{ Ric(U, U) + \frac{1}{2} \|\mathcal{L}_{U}g\|^{2} - \|\nabla U\|^{2} - (divU)^{2} \right\} * 1 = 0.$$
 (4.17)

On the other hand, the Ricci equation (4.15) together with (4.11) yields

$$Ric(U, U) = n + (trA_1)g(A_1U, U) - g(A_1^2U, U).$$
 (4.18)

From (4.5) it follows that

$$divU = tr(FA_1) = 0. (4.19)$$

We have from (4.5)

$$(\mathcal{L}_{U}g)(X,Y) = g(\nabla_{X}U,Y) + g(\nabla_{Y}U,X) = g((FA_{1} - A_{1}F)X,Y). \tag{4.20}$$

And using (3.9), (3.10), (4.5) and (4.8), we get

$$\|\nabla U\|^2 = trA_1^2 - 1 - g(A_1^2 U, U). \tag{4.21}$$

Since M is minimal, $trA_{\alpha} = 0$, $\alpha = 1, ..., p$. Therefore substituting (4.18), (4.19) and (4.21) into (4.17), we obtain

$$\int_{M} \left\{ \frac{1}{2} \|\mathcal{L}_{U}g\|^{2} + (n+1) - trA_{1}^{2} \right\} * 1 = 0.$$
 (4.22)

Thus we have the inequality (4.16).

From Theorem A, we have immediately

Corollary 2. Let M be as in Theorem 1. If the normal vector field N_1 is parallel with respect to the normal connection and

$$\int_{M} tr A_{1}^{2} * 1 = (n+1)Vol(M),$$

then M is locally a product of $M_1 \times M_2$ where M_1 and M_2 belong to some odd-dimensional spheres.

Proof. From the hypotheses and (4.22), we have $\|\mathcal{L}_{U}g\|^2 = 0$ and consequently $A_1F = FA_1$ because of (4.20). Combining Theorem A and $A_1F = FA_1$, we have the required result in Corollary 2.

REFERENCES

- A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht, Boston, 1886.
- 2. B. Y. Chen, Geometry of submanifolds, Marcel Dekker Inc., New York, 1973.
- 3. Y.-W. Choe and M. Okumura, Scalar curvature of a certain CR-submanifold of a complex projective space, Arch. Math. 68 (1997), 340-346.
- 4. J. Erbacher, Reduction of the codimension of an isometric immersion, J. differential Geometry 5 (1971), 333-340.
- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I and II, Interscience Publishers, New York, London, 1963 and 1969.
- 6. M. Kon, On hypersurfaces immersed in S^{2n+1} , Ann. Fac. Aci. de Kinshasa 4 (1978), 1-24.
- 7. J.-H. Kwon and J. S. Pak, CR-submanifolds of (n-1) CR-dimension in a complex projective space, Saitama Math. J. 15 (1997), 55-65.
- 8. J.-H. Kwon and J. S. Pak, On some contact CR-submanifolds of an odd-dimen-sional unit sphere, preprint.
- 9. M. Okumura and L. Vanhecke, n-dimensional real submanifolds with (n-1)-dimensional maximal holomorphic tangent subspace in complex projective space, Rend. Circ. Mat. Palermo (2) 43 (1994), 233-249.
- 10. K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker Inc., New York, 1970.
- K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, Boston, Basel, Stuttgart, 1983.

DEPARTMENT OF MATHEMATICS EDUCATION, TAEGU UNIVERSITY, TAEGU 705-714, KOREA.