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AN INTEGRAL FORMULA ON CONTACT CR-SUBMANIFOLDS
OF AN ODD-DIMENSIONAL UNIT SPHERE

Jung-Hwan KwON

ABSTRACT. In this paper, we study an (n + 1)-dimensional compact, orientable,
minimal contact CR-submanifold of (n — 1) ontact CR-dimension in a (2m + 1)-
dimensional unit sphere S*™ "1 in terms of integral formula.

1. Introduction

Let 5?1 be a (2m + 1)-dimensional unit sphere, that is,
ST £ e C™ L (2] = 1},

For any point z € S?™*! we put { = Jz, where J denotes the almost complex
structure of C™t!. We consider the orthogonal projection « : T,C™t! — T, S2m+1,
Putting ¢ = 7o J, we can see that the aggregate (¢,&,7, g) is a Sasakian structure
on $?™+1 where 7 is a 1-form dual to £ and g the standard metric tensor field on
§?m+1So §2m+1 can be considered as a Sasakian manifold of constant ¢-sectional
curvature 1, that is, of constant curvature 1 (cf. [11]).

Let M be an (n + 1)-dimensional submanifold tangent to the structure vector
field ¢ of $?™*! and denote by D, the ¢-invariant subspace ¢T, M N Ty M of the
tangent space T, M of M at = in M. Then £ cannot be contained in D, at any
point = in M (see section 2). If there is a non-zero vector U which is orthogonal
to £ and contained in the complementary orthogonal subspace Dy to D, in Ty M,
then U must be normal to M. Thus the assumption dimD; being constant and
greater than or equal to 2 at each point « in M yields that M can be dealt with a
contact C'R-submanifold in the sense of Yano-Kon [11].
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In the present paper we assume that dimD, = n— 1, that is, dimD,; = 2 at each
point z in M and determine such submanifolds. Manifolds, submanifolds, geometric
objects and mappings we discuss in this paper will be assumed to be differentiable
and of class C*°.

Recently, Kwon and Pak [8] proved the following :

Theorem A. Let M be an (n + 1)-dimensional contact CR-submanifold of (n —1)
contact CR-dimension in a (2m+1)-dimensional unit sphere S?™+1. If AJF = FA;
and Ny 1is parallel with respect to the normal connection, then M is locally a product
M; x My, where M, and M, belong to some odd-dimensional spheres, Ny := ¢U

and A; is the shape operator corresponding to Ni.

The purpose of the present paper is to give another characterization of an (n+1)-
dimensional contact C'R-submanifold of (n — 1) contact C'R-dimension immersed in
a (2m + 1)-dimensional unit sphere S?™+1 by using the following integral formula
due to Yano {10] :

[ ARic, X)+ lLxol? - VX - @iXP}e1=0, (1)
M

where X is an arbitrary tangent vector field on M, Lx the Lie derivative with
respect to X, V the Riemannian connection induced on M, *1 the volume element
of M and ||Y|| the length with respect to the Riemannian metric of a vector field
Y on M.

2. Preliminaries

Let M be a (2m + 1)-dimensional almost contact metric manifold with structure
(#,¢,m,9). Then by definition it follows that

$*X = -X +n(X)¢, ¢£=0, n(¢X)=0, n() =1,
9(6X,8Y) = g(X,Y) —n(X)n(Y), n(X)=g(X,§)

for any vector fields X, Y tangent to M. We consider a Riemannian manifold

(2.1)

isometrically immersed in M with induced metric tensor field g.

First of all we note that an n-dimensional submanifold normal to the structure
vector field ¢ of M is anti-invariant with respect to ¢, that is, ¢T, M C T, M~ for
each point z of M, and m > n (for details, see Yano-Kon [11}).
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In the sequel we assume that M is an (n+1)-dimensional submanifold tangent to
the structure vector field £ of a (2m+1)-dimensional almost contact metric manifold
M. We now denote by D, the ¢-invariant subspace defined by T, M N¢T, M and by
D2 the complementary orthogonal to D, in T, M. Then the sturcture vector field
¢ is contained in Dy. In fact, if £ € Dy, then there is a vector field X tangent to
M such that £ = X, from which applying the operator ¢ and using (2.1), we have
X =n(X)¢. Thus it follows that £ = 0, which is a contradiction. Hence ¢ € D at
each point = of M. Moreover by definition we can easily see that ¢D}F ¢ T, M~ for
each point z of M.

If the ¢-invariant subspace D, has constant dimension for ¢ in M, then M is
called a contact CR-submanifold (cf. [1], [11]) and the constant is called contact
CR-dimension of M (see Kwon and Pak [8]).

3. Fundamental properties of contact C R-submanifolds

Let M be an (n + 1)-dimensional contact C'R-submanifold of (n — 1) contact

C R-dimension in a (2m + 1)-dimensional almost contact metric manifold M. Then

by definition dimD; = 2 for each point z in M, and so there is a unit vector field U

contained in D+ which is orthogonal to £. Since ¢D+ C TM~, ¢U is a unit normal
vector field to M, which will be denoted by N;, that is,

Ny = ¢U. (3.1)

Moreover it is clear that ¢T M C TM & Span{N1}. Hence we have, for any tangent

vector field X and for a local orthonormal basis {N,, a = 1,...,p} (p = 2m —

n) of normal vectors to M, the following decomposition in tangential and normal

components :

¢X = FX +u'(X)Ny, (3.2)
¢Ny =~-Uy+ PNy, a=1,...,p (3.3)
It is easily shown that I’ and P are skew-symmetric linear endomorphisms acting
on Ty M and T, M=, respectively. Since the structure vector field ¢ is tangent to

M, (2.1) implies
9(FUa, X) = —u'(X)g(N1, PNa), (3.4)
9(Ua, Up) = bap — 9(PNa, PNpg). (3.5)
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We also have
9(Uo, X) = ul (X)d1a

and consequently
g(U, X) =ul(X), Uy=0, a=2,...,p.
Furthermore from (3.2) it is clear that
F¢=0, u!(¢)=0, FU=0, «'(U)=1
Next, applying ¢ to (3.1) and using (2.1) and (3.3), we have
Up=U, PN =0
Applying ¢ to (3.2) and using (2.1), (3.2), (3.3) and (3.9), we also have
F2X = - X +p(X)¢ +u(X)U, w!(FX)=0.
On the other hand, it follows from (3.3), (3.7) and (3.9) that
¢Ny = -U, ¢No=PN,, a=2,...,p.

and moreover we may put

p
PNQZZPC!,BN,@7 O!=2,---,p,
B=2

where (P,g) is a skew-symmetric matrix which satisfies

p
Z PopPgy = —day-
B=2

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

We denote by V and V the Levi-Civita connection on M and M, respectively

and denote by D the normal connection induced from V in the normal bundle TM~*

of M. The Gauss and Weingartan equations are

VxY =VxY +h(X,Y),
VXN =-A,X+DxN,, a=1,...,p

(3.14)
(3.15)
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for any vector fields X,Y tangent to M. Here h denotes the second fundamental
form and A, is the shape operator corresponding to N,. They are related by

h(X,Y) = Ep: 9(AaX,Y)N,.

a=1
Furthermore we put

P
DxNa = sas(X)Np, (3.16)
B=1

where (sog) is the skew-symmetric matrix of connection forms of D. Finally, the
equation of Gauss, Codazzi and Ricci are respectively given as follows (cf. [2,5,8]) :

R(X,Y)Z =R(X,Y)Z
+ 3 {9(4aX, 2)AaY — g(AaY, Z)AaX}, (3.17)

g(R(XaY)Z’ NOL) - g((VXAa)Y - (vYAa)X) Z)

+ Y {9(AgY, Z)s8a(X) — 9(AsX, Z)55a(Y)}, (3.18)
B8
g(R(X7 Y)Nav Nﬁ) = g(R_L(Xv Y)Ncu Nﬁ) + g([Aﬂ7 Aa]X, Y) (319)

for any vector fields X, Y, Z tangent to M, where R and R denote the Riemannian
curvature tensor of M and M, respectively and R is the curvature tensor of the
normal connection D.

4. Main results

In this section we specialize to the case of an ambient Sasakian manifold M, that

is,

Vx¢=9¢X, (4.1)
(Vx@)Y = —g(X,Y)¢ +n(Y)X. (4.2)
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Then, by differentiating (3.2) and (3.11) covariantly and by comparing the tangen-

tial and normal parts, we have

(VyF)X = —g(Y, X)¢ + n(X)Y — g(A1Y, X)U + u(X)A,Y,
(Vyul)X = g(FAY, X),
VxU=FA X,

g(ALU, X) = Zsm )Psa, @ =2,...,p(=2m —n).

On the other hand, since { is tangent to M, (4.1) gives

Vx¢=FX,
g(A1€, X)) =u!(X), thatis, A;&=U,
Aa£:O7 a:2)"‘7p‘

(4.3)
(4.4)
(4.5)

(4.6)

(4.7)
(4.8)
(4.9)

We suppose that M is a Sasakian manifold of constant ¢-sectional curvature 1,

that is, of constant curvature 1 and that N; is parallel with respect to the normal

connection D. Hence it follows from (3.16) that

51,620) /8=2""’pa

which and (4.6) give
AU=0, a=2,....p.

Next, since the curvature tensor R has the form
R(X,Y)Z =9(Y,2)X - 9(X,2)Y
for X, Y, Z tangent to M, the equations (3.17), (3.18) and (3.19) imply
R(X,Y)Z =g(Y, Z)X — (X, Z)Y
+3 {9(AnY, Z)AuX — g(AuX, 2)AaY},

(VxA)Y — (Vy A1) X =0,
9(R(X,Y)Na, Np) = 9([45, Aa)X, Y),
Ric(X,Y) =ng(X,Y) + Y {(trda)g(AaX,Y) — g(AZX,Y)}

with the help of (4.10).

As an application of the integral formula (1.1), we will prove

(4.10)

(4.11)

(4.12)

(4.13)
(4.14)
(4.15)
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Theorem 1. Let M be an (n+1)-dimensional compact, orientable, minimal contact
C R-submanifold of (n — 1) contact CR-dimension in S*™t!. If the normal vector

field Ny is parallel with respect to the normal connection, then
/M trA2 512 (n+ 1)Vol(M). (4.16)
Proof. Putting X = U in (1.1) gives
/M{Rz'c(U, U)+ %IlﬁugHQ ~ |VU|? = (divU)?} x 1 = 0. (4.17)
On the other hand, the Ricci equation (4.15) together with (4.11) yields

Ric(U,U) = n + (trA1)g(A1U, U) — g(A%U, U). (4.18)
From (4.5) it follows that
divU = tr(FA1) =0. (4.19)
We have from (4.5)
(Log)(X,Y) =g(VxU,Y) +g(VyU, X) = g((FA — AiF)X,Y). (4.20)
And using (3.9), (3.10), (4.5) and (4.8), we get
[VU|? = trA2 — 1 — g(A2U,U). (4.21)

Since M is minimal, trA, =0, @ = 1,...,p. Therefore substituting (4.18), (4.19)
and (4.21) into (4.17), we obtain

1
/ {51Lugl® + (n+1) - trAl} «1 =0. (4.22)
M
Thus we have the inequality (4.16). d

From Theorem A, we have immediately

Corollary 2. Let M be as in Theorem 1. If the normal vector field Ny is parallel
with respect to the normal connection and

/ trA2 1 = (n+ 1)Vol(M),
M

then M 1is locally a product of My X Ma where My and My belong to some odd-
dimensional spheres.

Proof. From the hypotheses and (4.22), we have [|Lyg||?> = 0 and consequently
A F = FA; because of (4.20). Combining Theorem A and A;F = FA;, we have
the required result in Corollary 2. a
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