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FIXED POINT PROPERTY AND
COMPLETENESS OF ORDERED SETS

ByYunG GAI KANG

ABSTRACT. In this paper, we characterize the existence of fixed points of a multi-
valued function by the existence of complete preorder on the given domain. Also we
investigate relations between the completeness of a given order and the fixed point
property of some multivalued functions.

1. Introduction

Let X be a partially ordered set. It is well-known from Zorn’s lemma that if X

satisfies one of

(A) every nonempty chain in X has an upper bound,

(B) every nonempty chain in X has a least upper bound,

(C) every nonempty well-ordered subset of X has an upper bound, or
(D) every nonempty well-ordered subset of X has a least upper bound,

then X has a maximal element.

If (A)((B), resp.) holds, then X is said to be inductive (complete, resp.). Note
that (B) and (D) are logically equivalent. It is known that existence theorems of
maximal elements in some ordered sets can be reformulated to various types of fixed
point theorems (see Park [7]). One of them is the following Zermelo’s fixed point

theorem;
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Theorem [3, Theorem 1. 2. 5]. Let (X,<) be a complete partially ordered set
and f : X — X be a self-function satisfying

foralze X, z < f(x) (S1)

then f has a fized point, that s, there is an x € X such that z = f(z).

There have been many efforts to characterize the completeness of ordered sets
by fixed point properties of some self-functions. Tarski [11] and Davis (2] proved
that the completeness of a lattice is equivalent to the existence of fixed points of
increasing self-functions. And Taskovié¢ [12] proved that a partially ordered set is
complete if and only if every self-function satisfying (S1) has a fixed point.

On the other hand, Smarzewski [8] characterized the fixed point property as

follows ;

Theorem [8, Theorem 1]. Let X be a nonempty set and f: X — X be a self-
function. Then f has a fized point if and only if there exists a preorder < on X
such that (X, <) has normal order structure and f satisfies (S1).

Note that (z, <) has normal order structure if and only if X is complete, if < is
a partially ordered set.
Smithson [9, 10] obtained some fixed point theorems for multivalued functions

satisfying some increasing conditions. One of them is as follows;
Theorem [9, Proposition 1. 6]. Let (X, <) be a partially ordered set satisfying
(D) and F : X — 2%\ {0} be a multivalued function. Suppose that

Jor allx € X, there exits a y € F(x) such that x < y (M1)

then F has a fized point, that is, there is an ¢ € X such that z € F(z).

In this paper, we obtain a characterization of the fixed point property for mul-
tivalued functions. We also characterize the completeness of ordered sets by fixed
point property of multivalued functions. And some fixed point theorems for multi-
valued and single valued functions are proved.

2. A Characterization of Fixed Point Property
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Let X be a nonempty set. A reflexive and transitive relation < on X is called
a preorder. Further, if < is antisymmetric, then < is called a partial order. A pair
(X, <) of aset X with a preorder (partial order, resp.) < is called a preordered set
(partially ordered set, resp.).

Let (X, <) is a preordered set. The terms chain, well-ordered subset, upper
bound can be defined as usual. For z € X, we denote S(z) = {y € X | z < y}. For
z € Xand A C X, we call z a mazimal element of A if

z€Aandifyec A z<ytheny<uz.
And z is called a least upper bound of A if
z is an upper bound of A,and if y is an upper bound of A4, z < y.

Max(A) (Sup(A), resp.) will denote the set of all maximal elements (least upper
bounds, resp.) of A. If Sup(A) = {0} is a singleton, then we denote zy = supA.
X is said to be inductive( complete, resp.) if every nonempty chain in X has an
upper bound (least upper bound, resp.).
Let (X, <) be a preordered set. If we define a relation ~ on X by

zrvy<scs<yand y <z,

then ~ is an equivalence relation and Y = X/ ~ is a partially ordered set. For
z € X, [z] will denote the equivalence class of . It is easy to show that [z] is a
maximal element of Y if and only if £ is a maximal element of X. Furthermore, if
X is inductive(complete, resp.) then so is Y.

A nonempty subset E of X is said to be order ectremal if

(i) forallz,y € E, z ~y, and
(ii) feeE,ye Xand z <y, theny € E.

If X is complete and every order extremal subset of X is a singleton, then we say
that X has normal order structure [8]. Obviously, if X is partially ordered, then X
has normal order structure if and only if X is complete.

Let (X, <) be a preordered set. For a single valued function f : X — X , we
consider the following conditions;

(81) forall z € X, z < f(x).
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(S2) there is an e € X such that e < f(e).

(83) if 1 < m9, then f(z1) < f(w2).

(S4) if C is a well-ordered subset of X such that f(z) =z + 1for all x € C and ¢ €
Sup(C), then z¢ < f(zg).

If (S3) is fulfilled, then f is said to be isotone or increasing. Note also that (S3)
implies (S4).

In the following, 2% denotes the power set of X. For a multivalued function
F : X — 2% consider the following conditions mostly é.ppea,red in Smithson [9, 10].

(M1) for all z € X, S(z) N F(z) # 0, that is, there is a y € F(x) such that z < y.

(M2) there is an e € X such that S(e) N F(e) # 0.

(M3) if zy < z2 and y; € F(x1), then there is a y2 € F(z3) such that y; < yo.

(M4) if C is a well-ordered subset of X such that £+ 1 € F(z) for all z € C and zp €
SupC, then S(zo) N F(zo) # 0.

(M5) if C is a well-ordered subset of X such that there is an increasing selection
f(z) € F(z) for all z € C and if 2o € Sup(C), then there is a yg € F(zg) such
that f(z) <yo forallz € C.

Note that if F' = f is a single valued function, then (Mi) becomes (Si) fori =1,
2, 3, 4 and that (M5) implies (M4).
We say that F is isotone (see Walker [13]) if F satisfies (M3) together with

(M3)’ if 1 < z9 and ys € F(x3), then there is a y; € F(z;) such that y; < ys.

The following is a slight extension of Smarzewski’s lemma [8].

Lemma 1. Let (X, <) be a complete preordered set and F : X — 2X satisfy (M1).
Then there ezists an order extremal subset M C Maz(X) such that F(z) N M # 0
forallz € M.

Proof. Let Y = X/ ~. Since X is complete, Y is a complete partially ordered set.
By Zorn’s lemma, Y has a maximal element M = [z¢], for some zp € X. As a
subset of X, M C Max(X) and is order extremal. Moreover, if € M, there exists
some y € F(z) such that x € y. By the extremality of M, y € M. So F(z)N M is
nonempty.

Using Lemma 1, we characterize the fixed point property for multivalued func-
tions as follows;
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Theorem 1. Let X be a nonempty set and F : X — 2% \ {0} o multivalued
function. Then F has a fized point if and only if there is a preorder < on X such
that X has normal order structure and F' satisfies (M1).

Proof. Suppose that there is a preorder < on X such that X has normal order
structure and F satisfies (M1). By Lemma 1, there exists an order extremal subset
M of X such that F(z)NM # @ for all z € M. Since M is a singleton, let M = {zo}.
Then o € F(zo).

Conversely, suppose that F' has a fixed point in X. Define f: X — X by

e if ¢ € F(=z)
flz)= { any element of F(z), if z ¢ F(z).

Then f is a single valued function with fixed point. By Smarzewski’s theorem [8],

there exists a preorder < on X such that X has normal order structure and for all
z € X, z < f(z). Since f(z) € F(z), the proof is complete.

A simple observation of Smarzewski’s proof enables us to obtain a characteriza-
tion of fixed point property as follows;

Theorem 2. Let X be a nonempty set and f : X — X a function. Then f has a
fized point if and only if there is a preorder < on X such that X has normal order
structure and f satisfies (S2) and (53).

Note that Abian and Brown [1] proved a fixed point theorem for functions satis-
fying (S2) and (S3) in complete partially ordered sets.

3. Fixed Points and the Completeness of Posets

In (12], Taskovié proved that a partially ordered set (X, <) is inductive if and
only if every function f: X — X satisfying

(S81)’ for all z € Sub f(X), z £ f(x)
has a fixed point, where
Subf(X) = f(X)U{z | = is an upper bound of some chain in f(X)}
For multivalued function F' : X — 2% we also define

SubF(X) = F(X) U {z | = is an upper bound of some chain in F(X)}
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Obviously, F' maps SubF(X) into itself. Moreover, it is easy to show that if X is
inductive, so is SubF'(X). Therefore, if we consider F as a function from SubF(X)

into itself, Taskovié’s result is equivalent to the following;

Theorem 3. Let (X, <) be a partially ordered set. Then X is inductive if and only
if every multivalued function F : X — 2% satisfying (M1) has a fized point.

Proof. If X is inductive, then X has a maximal element zy by Zorn’s lemma. By
(M1), there is a y € F(zo) such that zo < y. Since z¢ is maximal, zo = y € F(zo).

Conversely, suppose that every multivalued function F : X — 2% satisfying (M1)
has a fixed point. Then every single valued function f : X — X satisfying (S1) has
a fixed point. So by Taskovié’s theorem, X is inductive.

If C is a well-ordered subset of a preordered set X and z € C, then z + 1 will
denote the immediate successor of z, if exists. Let C be a set of well-ordered subsets
of X and define a relation < on C by

C D<= C=D or C is an initial segment of D.

It is easy to show that < is a partial order on C.

Theorem 4. Let X be a preordered set and F : X — 2X be a multivalued function.
Suppose that (M2) and (M8) hold. Then either
(a) F has a fized point, or
(b) the set C = {C C X | C is well-ordered and z + 1 € F(z) for all z € C} is
nonempty and has a mazimal element with respect to <.

Proof. Suppose that F' has no fixed point. By (M2), there is an element e¢; € X
such that S(e;) N F(ey) # @. That is, there is an element ez € F(e;) such that
e1 < eg. Note that e; # eg, since F' has no fixed point. Assume that e;,es,--- , €,
were chosen so that e; < e;41 and e;+1 € F(e;) fori=1,2,--- ,n — 1. Then (M3)
shows that there is an e,+1 € F(e,) such that €, < e,41. By induction, we can
construct a well-ordered set C = {e,} such that e, + 1 = e,+1 € F(e,) for all
en €C. ThusC €Cand C # 0.

Let F be a nonempty well-ordered subset of C with respect to <. We will show
that |J F is an upper bound of F. Let A be a nonempty subset of |JF. Since F
is well-ordered, the set {C € F | ANC # @} has the first element Cp. And since
ANy is a nonempty subset of a well-ordered set Cp, it also has the first element
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zo. Let £ € A be arbitrary and choose C' € F such that z € C. By the definition
of Cp, Co < C. Hence Cy = C or Cp is an initial segment of C. Then x¢ is the
first element of ANC. Thus 2o < z and so xg is the first element of A. This shows
that |J F is well-ordered. Moreover, if z € |JF, then z € C for some C' € 7. Then
z+1 € F(z) and thus | JF € C. So |J F is an upper bound of . By Zorn’s lemma,
C has a maximal element. This completes the proof.

Corollary. Let X be a preordered set and f : X — X be a self-function satisfying
(S2) and (S3). Then either

(a) f has a fized point, or

(b) the set C = {C C X | C is well-ordered and f(z) =z + 1 for oll xz € C} is

nonempty and has a mazimal element with respect to <.

Note that every element of C in Theorem 4 or in the above Corollary is an infinite
set. So if X has no infinite well-ordered subset, then we have;

Theorem 5. Let X be a preordered set having no infinite well-ordered subset. Sup-
pose that F : X — 2X is a multivalued function satisfying (M2) and (M3). Then F
has o fized point.

Theorem 5 improves the result of Walker [13, Proposition 5. 2]. Furthermore, if

X satisfies (D), we obtain the following extension of Smithson’s theorem [9, Theorem
1. 1].

Theorem 6. Let X be a preordered set satisfying (D). Let F : X — 2X be a
multivalued function such that (M2), (M8) and (M4) hold. Then F has a fized

point.

Proof. Suppose that F' has no fixed point. Theorem 4 shows that the set C has a
maximal element Cy with respect to <. Then zg € Sup(Cp) exists. By (M4), there
isan 7 € F(xp) such that £¢ < 1. As in the proof of Theorem 4, we can construct
a well-ordered sequence C = {z,} such that z, < zn41 and z,+1 € F(x,) for all

n=0,1,---. Then CoUC € C and Cy < Co U, which contradicts the maximality
of Cy.

Since (S3) implies (S4), if F' = f is a single valued function, theorem 6 reduces
to the theorem given by Abian and Brown [1];

Corollary [1]. Let X be a preordered set satisfying (D). Let f : X — X be a
function such that (S2) and (S3) hold. Then f has a fired point.
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