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THE PARTIAL DIFFERENTIAL EQUATION ON FUNCTION
SPACE WITH RESPECT TO AN INTEGRAL EQUATION

SEUNG JUN CHANG AND SANG DEOK LEE

ABSTRACT. In the theory of the conditional Wiener integral, the integrand is a func-
tional of the standard Wiener process. In this paper we consider a conditional function
space integral for functionals of more general stochastic process and the generalized
Kac-Feynman integral equation. We first show that the existence of a partial differ-
ential equation. We then show that the generalized Kac-Feynman integral equation
is equivalent to the partial differential equation.

1. Introduction

Let (Co[0,T], B(Co[0,T]), mw) denote Wiener space where Cy[0, T is the space
of all continuous functions z on [0, 7] with z(0) = 0. Many physical problem can
be formulated in terms of the conditional Wiener integral F[F|X] of the functional
defined on Cy[0, T of the form

F(z) = exp{—/0 0(s, z(s))ds} (1.1)

where X (z) = z(t) and 6(.,-) is a sufficiently smooth function on [0,7} x R. It
is indeed known from a theorem of Kac [11] that the function U(-,-) defined on
[0,T] xR by

06,8 = A= e {-CSE  BrEO + o) = ¢ -6 (2)
is the solution of the partial differential equation
U 16%°U
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satisfying the condition U(0,£) = 8(¢ — &). In [9], Donsker and Lions showed that
the function

U(t,€) = Elbt,¢—go(x) F ()] (1.4)
is the solution of the partial differential equation (1.3) where &, ¢ (t > 0,£ € R) is
the Donsker’s delta function formally defined by

bre(x) = % /R W=y,  x € Co[0,T).

In [18], in order to provide a rigorous treatment of the function (1.4) involving the
Donsker’s delta function, Yeh introduced the concept of the conditional Wiener
integral and derived a Fourier inversion formula for conditional Wiener integrals :

E[F|z(t)

1
—27I'R

1 2
= 5]meXP{—'2‘Z} (1.5)

e RO F)du, ¢cR

which gives a formula to obtain the explicit evaluation of the solution of the partial
differential equation (1.3).

Using the inversion formula (1.5), Yeh [18] derived the Kac-Feynman equation
for a time independent continuous potential function 6(¢). In (7], Chung and Kang,
using the Yeh’s inversion formula, obtained similar results for a time dependent
bounded potential 8(s,£). In [15], Skoug and Park obtained a simple formula for
expressing conditional Wiener integrals with a vector-valued conditioning function
in terms of ordinary Wiener integral, and then used the formula to derive the Kac-
Feynman integral equation for a time independent potential function 6(¢).

In this paper we extend the ideas of [7,11,14] from the Wiener processes to more
general stochastic processes. We note that the Wiener process is free of drift and
is stationary in time. However, the stochastic process considered in this paper is a
process subject to drift and is nonstationary in time.

In Section 3, under the appropriate regularity conditions on 6(-,), a(-) and b(:),
the function U given by (2.3) has the first and second partial derivatives with respect
to 1. In Section 4, it has been shown that the generalized Kac-Feynman integral
equation (2.3) is equivalent to a partial differential equation which is generalized
form of the equation (1.3).
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2. Preliminaries

Let D = [0,7) and let (£2, B, P) be a probability measure space. A real valued
stochastic process X on (2, B, P) and D is called a generalized Brownian motion
process if X (0,w)=0 almost everywhere and for 0 < tg <t < --- < tp < T, the
n-dimensional random vector (X (¢1,w), -+, X (tn,w)) is normally distributed with
the density function

K (4, = (@m" H(b(t ) —b(t;-1)))"* (2.1)

1=

Cex (("73 - a’(ty (Tb—l - af(tj—-l)))2
p{ E b(t;) — b(t;_1) }

where 7= (11, -+, Mn), o = 0 and a(t) is a real valued function with a(0) = 0 and
b(t) is a strictly increasing real valued function with b(0) = 0.

As explained in [16, p.18-20], X induces a probability measure ;1 on the measur-
able space (RP, BP) where RD is the space of all real valued functions z(t), ¢t € D,
and BP is the smallest og-algebra of subsets of RP with respect to which all the
coordinate evaluation maps e¢(z) = x(t) defined on R” are measurable. The triple
(RP,BP, ) is a probability measure space. This measure space is called the func-
tion space induced by the generalized Brownian motion process X determined by a(-)
and b(-).

Let X be an R™-valued measurable function and Y a complex valued u-integrable
function on (RD, BD, ). Let F(X) denote the o-algebra of subsets of RP generated
by X. Then by the definition of conditional expectation, the conditional expctation
of Y given F(X), written E[Y|X], is any R"-valued F(X)-measurable function on
R? such that

/E Yy = /E EY|Xldu for EeF(X).

It is well known that there exists a Borel measurable and px-integrable function on
(R™, B(R™), ux) such that E[Y|X] = ¢ o X, where ux is the probability measure
defined by ux(B) = w(X~Y(B)) for B € B(R™). The function ¢(£), § € R™ is
unique up to Borel null sets in R™. Following Yeh (16] the function »(€), written
ElY|X = f_], is called the conditional function space integralof Y given X. Let W be
a stochastic process on (R?, B2 1) and D defined by W (t,z) = z(t),t € D,z € RP.
Then W is a generalized Brownian motion process whose sample space is RD.
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For each ¢t € [0,T) and £€R, let Y; and X; be BP-measurable functions on RP
defined by

Y,(z) = exp{ /0 0(s,a(s) + £)ds} and Xu(@)=a(t)+E  (22)

where 0(-,-) is a complex valued Borel measurable function on [0,T] X R for which
Y; is u-integrable for each (¢,£) € [0,T] x R. In recent paper[5], it has been shown
that the function U on [0,T] x R X R defined by

U(t36,m) = BIGIX, = l(anb(0) exp{~ L2020

satisfies the generalized Kac-Feynman integral equation

— alt) — £)?2
U6 = (nb(9) enp{- 10 =80 (23)

+f t [ 96,0016, Otan(6t0) - o)

(¢ - als)) — (1 (1)’
B T B0 R L

3. Existence of the partial differential equation

In this section, we will show that the function U given by (2.3) has the first and
second partial derivatives with respect to 7.
In order to do this, we shall require the following assumptions:
Assumption : We assume that 6(t,n) has the first partial derivative 6,(t,n) such
that

10(t,n)| <K and [0,(t,m)| <K

on [0,T] x R for some constant K > 0.

We also assume that b(t) is continuously differentiable with ¥/ (t) > ¢y for any
t € [0,T] and a(t) is continuous on [0, T for some constant ¢g > 0.

We start with the following lemma proved in [2](p.46, Corollary 5.9).
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Lemma 3.1. Suppose that for some ty € [a,b], the function © — f(z,to) is in-
tegrable on X, that 8f/0t erists on X X [a,b], end that there exists an integrable
Sfunction g on X such that

of

Yzl <

’at(w’) =

g(x).

Then the function
F(t) = / £ (@ t)du(z)

is differentiable on [a,b] and

6t /f(w t)du(z /at z,t)du(z

From Lemma 3.1, we obtain the following theorems.

Theorem 3.2. Let U(t;&,n) be as in (2.3). Then the function

W (t;€,m) / / 0(s, YU (s; €, ¢) (2m(b(t) — b(s))) "}

((n— a(t)) — (¢ — a(s)))
=@ — W)

has the first partial derivative with respect to n and

}dCds

t ’U,2
= [ ] 06,00 (s16,0@n(b(®) — b(s))~Huexp(~5 auds
0 JR

where u = ((¢ — a(s)) — (1 — a(£))) (b(t) ~ b(s)) %

Proof. In view of Lemma 3.1, it suffices to show that

~ o) (¢ - als)))?
COE O R L
(3.1)

is finite. Since 6(s,¢) and E[Y,|z(s)+ ¢ = (] are bounded, (3.1) is less than or equal

to

[ 12 6, 00ts56, 0 Crte) -t o~
o JR O7

L omTe o) — pa - = 80) = (€= as)
Ki [ [ (@000 - b)) 0

(a9 =9 (=) = —als)))’
p{ 2( o) b(1) — b(s) )}dak

(3.2)




52 SEUNG JUN CHANG AND SANG DEOK LEE

for some constant K; > 0.
Observe that for any s,t € [0,T] with s < ¢,

v? . (u—v)? b(t) (v b(s)
b(s) * b(t) —b(s) — bls)(b(t) —b(s)) b(t)

Using this in (3.2), (3.2) is equal to

)+ ).

t 1 — — &2
Ku [ (en8(s)000) - o)~ exp{—‘”—%—i} (33)

bt _be) 2

ool s = € -0 - €~ - a0 - 0)°}
CEORYEC]

l b(t) — b(s) d¢ds.

We first consider the integral which appears in the above equation (3.3)

W e
/Re"p{ 00 — 5@y [~ 9

) oy — gy} € Zae)) = (1 = alt)
-3 -atg - )" | =GR =D

By the change of variable theorem, the above equation is equal to

/Re"p{‘2b(s>(blzg)- b(s))yQ} ) '

b(t) — b(s)
b(t) 2 |yl
= /R""‘p{‘%(s)(b(t) “b(s))” }b(t) “ o W

M) o\|m-al) ¢
" /R p{ 26(5) (6(t) — (s)) * } 0 idy
_o8) | In—a(t) — ¢ (27fb(8)(b(t) - b(8))) ?
0 b(t) b(t)
where y = ( —a(s) — &€ — (n — a(t) — €)b(s)/b(t). Using this in (3.3), (3.3) is less
than or equal to
‘ 1 (n—a(t) — &)
Y Jo V/(2m)26(s) (b(2) — b(s)) exp{— 2b(t) } (3.4)

2b(s) . |n— a(t) — €| { 2nb(s)(b(t) — b(s)) \ *
'[b(t) TR < 0 Hd
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But by the change of variable theorem, we have

t . x 2 g = / ! X
o /(2m2b(s)(b(t) — b(s))  b(t) 0 +/m2(b( (s))
<1/t 1 d3<1_ib<t)1 _ 2
T my/b(t) Jo VB(E) —b(s) T m/b(t) Co Jo \/_ 7Co
since b(s)/b(t) <1 for every 0 < s <t < T and ¥/ (t) > ¢o for any ¢ € [0, 7). Hence
using this in (3.4), (3.4) is less than or equal to

2 t (In-a() - €\?
b’ (0) * \/27rb(t')"( b(t) ) <00

Thus W (t;£,n) has the first partial derivative with respect to 7 and

b(s)
0 ds

< 00

- /0 /R 0(s, QYU (5;,0) 2 (b(2) — b(s)))~}

(7= a(t)) — (¢ —a(e))?) [ (7= a(t)) — (¢ — als))
’e"p{‘ 2(6(0) = o(3)) }(‘ TOEEO )dcds'

Theorem 3.3. Let W(t;&,m) be as in Theorem 3.2. Then the function W (t;€,n)

has the second partial derivative with respect to 7.

Proof. By Theorem 3.2, BBW

exists and is given in Theorem 3.2. Then we have

t 1 u2
S = | [ 06,0056, 0@r00) - o) Huexp(~F Jauds.
0 JR

where u is as in Theorem 3.2.
In view of Lemma 3.1, it suffices to show that

2
6(s, QU (s;€, )} 2m(b(t) - b(s))) "I uexp{—5-}|duds (35)

is finite. But (3.5) is equal to

t 2
[ [16c(5.0UGs16,0) + 85, U536, 0l 2m6(6) — b(s)) ™ H1ul exp{~ - Yauds.

By assumption, 6.(s, ¢) is bounded and hence we can see that

[ 1o, 0utsie, 0l enteo - 4(5))~Hulexp{~ 5 Jauds
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is finite. Hence it remains to show that

t 2
1666 00c(s1,01(2rn0000) - o6 Hul exp{ -5 s (36)

is finite. By Theorem 3.2, 8W /07 exists and so OU/8n exists. Moreover, by the
definition of U(s;£,(), we can see that

U(s;¢,¢)
’ _ _£)2
= E[exp{/0 O(w, z(w) + €)dwMz(s) + £ = ¢](2mb(s))"2 exp{_ (€ ;1(,2) €) }
= (2mb(s)) ™% exp{—— (n — a(t) + /b(t) — b(s)u — 5)2.}

2b(s)
. /R ) exp{ /0 0(w, w(w) — ’;‘(“’)) 2(s) + ’;(( )) (n+als) — a(t)

+ /b(t) — b(s)u — &) + {)dw}dy,(ac)

Thus we have

ou 7 (77 — a(t) + b(t) — b(s)u — 6)2
S (56.0) = @mbls)” eXp{ Lo }
: +0(w, z(w) — ) ( ) als) —a

b(t) — b(s)u — &) — £)dw
_ (n—a(t) + /b(t) —b(s)u — £) }

b(s)
L exp{ ot atw) - Kt

b(( )) (n+ a(s) — a(t) + V/b(t) — b(s)u — &) + {)dw}du(x)
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Using this in (3.6), (3.6) is less than or equal to

/ / (2m)?b(s)(b(2) — b(s))) 05, ¢) (3.7)
0 R

(n — a(t) + /b(t) — b(s)u — €)? u?
. exp{ 25(s) }Iul exp{————}

n—a(t) + /b(t) — b(s)u — &
+ g)dw) + 5s) '

< K[ [ [(n )00 - b)) Hul exp{ - Y

t _3|n—a(®) + Vo) ~bls)u—¢
+ / / ((2m)2b(s)(b() ~ b(s)) - ‘

(n = a(t) + Vb(t) = bls)u —§)* o
. exp{ - ) —5 } Iulduds]

duds

for some constant Ko > 0 since 6(s, ¢) and d6(s, ¢)/9¢ are bounded and [b(w)/b(s)| <
1 for every 0 < w < s < T. But we have that

_(m-a(t) =€+ O —B@u)?

2b(s) 2

_ b+ (n—a(t) - OVEO —5E)/b1)° (- alt) - &)°
2b(s) 2b(t) '

Using this, we consider the last integral which appears in the right-hand side of
(3.7)

| [enreaen -uon |
0 IR b(s)
. eXp{— (n— a(t) + V/b(t) - b(s)u — §)*

2b(s)

- /0 t fR ((27)2b(s) (b(2) — b(s)))~} exp{—%((%(u + i?(fyﬂ(" —ald) - f))z}

(n—a(t) — &%\ |n —alt) + v/b(t) — b(s
' e"p{" 2b(2) } b(s)

n—a(t) + /b(t) — b(s)u — £l

2
%—}lulduds

Ju 5‘lulduds.
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Let v = u + ((n — a(t) — £)4/b(t) —b(s))/b(t). Then by the change of variable
theorem, the above equation is equal to

t I
[ (@m0 - o) expf - =2 =8

OEL0 (n-alt) - &) B =)
= ate - H 0 T e

exp{ 2b((t)) 2}d ds

= [ (b0 be)) Fexp{- =202

b(s) Vo) — b(s( —a(t) - l b(s)
b(2)” b(t) V 5(t)

(n—a(t) - \/b(t — b(s) b(s) y?
[ 0] s) VDY {75 Javds

< / ((2m)2b(s) (b(t)—b(s)))"‘l‘
JJRZCEORRE S PR ER [ vlewt-2 1y
+ (n~— a(t) —5)2\/5&_/@( {_E_}dy]ds

< i [ V2 + 4r(n — a(t) - ﬂ\/mt_(n —a(t) — 5)2]
\/7b(t) b(t) b(D)2

<&
— /bt 2 7
where y = 1/ 280 and we have used exp{—(n—a(t) — £)2/2b(t)} < 1 and ¥ (t) > co

for every t € [0,T]. By using this in (3.7), (3.7) is finite. Thus W (¢;¢,n) has the
second partial derivative with respect to 7.

4. The partial differential equation

In this section we will show that the generalized Kac-Feynman integral equation
(2.3) is equivalent to a partial differential equation which is generalized form of the
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equation (1.3). That is, the function U given by (2.3) satisfies the patial differential

equation

ou 1, 62U y U
] o (t)—n‘ + 00, n)U(t;€,m) (4.1)

with the initial condition lim,_,o+ U(¢;€,7) = 6(n — £).

Main theorem. For each t € [0,7] and & € R, let X; and Y; be as in (2.2).
Then the function U given by (2.3) satisfies the partial differential equation (4.1).

ow

Proof. Let W(t;€,7n) be as in Theorem 3.2. Then by Theorem 3.2 and 3.3, 8

2

and %FVZ" exist. Let u be as in Theorem 3.2. Then

t ,u2
= [ ] 8o U536, @mot) = bs))~Huexp{~ Jauds
0 JR

and

2 t u2
%‘,‘7‘2—/ = /0 /Rga,;[O(s, QOU(s;€, Q)] (2m(b(2) —b(&‘)))_%uexp{——g}dudg_

Thus by using these we see that

2 = (onb(y) ep{- 1228y 1=l 2
t : u2
+ [ e, U516, 0 2r(b() — bs)) ~Huexp{~- }duds
and
Z_U _ (2mb())~} exp{__ ;I(:(f)t)— 5)2}(77—:((:)) —5)2
+ (mb() (- 1208y

t a _% u2
+/o /R5,,—[9@,011(3,6,4)]m(b(t) = b(s))) P uexp{ - Jduds.
Note that

2 (006, OU (556 0) = el OUTs58,0) + 853 Uc(s:6,0)
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and
2 [0, U (5:8,)] =~ () Bc(s, DU 36, €) + B(s, OUelsi ,)) )
+ 3600 ~ b))~ u B0 (0c(s, OU(5:6,0) + 0(5, QUi (5:6,0)).
Hence we obtain
3w HOG0) —b(6) T (0c(,OU(s:6,0) + 0, OVc(s:6,0)  (43)

= 2 [0, OV (536, O] + /(1) (6c(5, OU(5:8,0) + (5, OUc(5:8,0)).
By (4.2) and (4.3), we have

1, U » —a()=8)%,, n—alt) —£y2 1,
(0 5 (e56,0) = (2mb)Hexp{ -G (T= e =y )

_ _ £\2
+ (2mb(t)) "3 exp{—gz—;l(f(%)—g)—}(—ﬁ)(%bl(t))

t 2
+ [ [ 5106006 0)em exp{~-bauds
+a’(t)567—; /0 t /R [e(s,c)U(s;g,c)](zw)—%exp{—l‘;}duds.
Now, consider the integral
t bl 1 2
| [ 51060016 0)em 4 exp{ -4 auds. (49
By integrating the both sides of (4.4) with respect to ¢ from 0 to v, we obtain
v gt . 2
/0 /0 /m %[O(S,C)U(s;f, $]@m)~2 exp{—u?}dudsdt
v v 2
= L /R/ %[H(S,C)U(S;f, C)](?w)"% exp{—%}dtduds
v 2
= [ [ 106,006,001 2m 4 exp(= 5 Yauds
= /v/ 0(s,n + a(s) — a(v) + v/b(v) — b(s)u)(27) "2 exp{—%}
0o JR

-U(s;€6,m+ a(s) —a(v) + +/b(v) — b(s)u)duds — /: 0(s,mU(s;&,n)ds.
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So, by differntiating with respect to v and replacing v by ¢, we have
t o 1 U2
| [ 516660016, 0)2m) ¥ expl~- Juds (45)
8 t 1 u2 \
— 5 | [186,00(si,0]2mF exp{=TJduds — 0(t,mUEE)

Thus we have

;Y 3 —a(t) =2, 1, n—alt) -
3057 = @) fexp{—(i—;‘%i}(éb(t»(l—‘;(%—ff
1 — QG 2
+(27rb(t))‘iexp{__(.7_7_7l()%__§)_}(_b(t NEI0)
o [t -
+ 2 [ 106,00t )en exp{- auds — 66 mUGiE )
t 2
+d O [ [ [86,0U:€,0](2m) " exp{~ 5 auds.
But
] (n —a(t) - §)*
5;[(2775(?5) ¥ exp{- —2—1)(;)-'—}] (4.6)
= (o6 exp{~ 220y Ly e b(lt))
+ @nb(y)~} oxp{ - LRI =Ly 1= all =)
1 — —£)2 — _
+ @nb(t))~F exp{-11 ;22) Sy Z((z)) g)z(%b’(t)).

By using (4.6), we have

ou 1, ..0°U ,, .0U X
57 = 5P (t)W —a (t)a_n + 0(t,mU(t;€,m)

which completes the proof of the theorem.

Remark. In Main Theorem, if {z(t) : t € [0,T]} is the standard Wiener process,
then a(t) = 0 and b(t) = ¢ and hence the function U(t;&,n) satisfies the following
partial differential equation

oU 10%U
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