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A PROOF OF THE MOST IMPORTANT
IDENTITY INVOLVED IN THE BETA FUNCTION

JunNESANG CHOI

ABSTRACT. A new proof of the well-known identity involved in the Beta function
B(p, q) is given by using the theory of hypergeometric series and a brief history of
Gamma function is also provided. The method here is shown to be able to apply to
evaluate some definite integrals.

1. Introduction

The birth of the Gamma function was seen in two letters from Leonhard Euler
(1707-1783) to Christian Goldbach (1690-1764), just as the simple desire to extend
factorials to values between the integers. The first letter dated October 13, 1729
dealt with the interpolation problem, while the second dated January 8, 1730 dealt
with integration and tied the two together. Euler gave us the well-known Gamma

function

I'(z) = ‘/(;oo e > dt, Re(z) > 0, (1)

where the notation I' is due, in fact, to Adrin Marie Legendre (1752-1833).

Euler considered z as the positive real numbers in (1) and the move to the
complex plane was initiated by Carl Friedrich Gauss (1777-1855). Legendre calls .
the integral (1) the second Eulerian integral. The first Eulerian integral is currently
known as the Beta function and is now conventionally written

1
0

Blp,q) = f #2101 — £)3-1 g, @)

where Re(p) > 0 and Re(gq) > 0.
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The Gamma function satisfies the relationships:
[(z+ 1) = 2I'(2), 'n+1)=n!'(n=0,1,2,...), and I'(1/2) = V7. (3)

There is the well-known relationship between Euler’s two types of integrals (see
Choi and Nam [2)):

B(p,q)=?r—((%1:%, andso  B(p,q) = B(g.p). (4)

For an arbitrary (real or complex) parameter «, define a binomial coefficient by

(§) =1 ma (7)- ool oi2s) @

0 n!

so that

(_a) — (=1)™(a@)n — (=) T(a+n) (n =0,1,2,.. ) (6)

n n! n!  T(a)

where (a), denotes the Pochhammer symbol (or the generalized factorial, since
(1), = n!) defined by

(@o=1 and (n=ala+l)...(e+n-1) (n=1,2,3,...). (7)

The familiar binomial expansion is given as follows:
. o
(1+2) =1;)<n)z 8)
(|2l <1; Re(@) >0 ifz=-1; a=N ifz=1)

N being a non-negative integer.
The well-known hypergeometric series is defined by

oFi(a,b; ¢ 2) =) (a)(z)(b)n _zn:'
n=0 n .
_ I'(c) i I'(a+ n)I'(b+ n) _Z_z 9)
- T(a)T'(b) n=0 I'(c+n) n!

(lz} <1;¢#0,-1,~2,...; Re(c—a—b) >0 if z=1; Re(c—a—b) > -1 if z=—1)
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which, for a = ¢ and b = 1 (or, alternatively, for a = 1 and b = c¢), reduces
immediately to the relatively more familiar geometric series. In fact, in his 1812

thesis [3], Gauss proved his famous summation theorem:

WFila b ¢ 1) = ?E?E%;{Z:g, Re(c—a—b) >0 (c0,—1,2....) (10)

or, equivalently,

Z (C(IZnnZ)'n = Fﬁz)f(:)r(c : :;, Re(c—a—-b)>0(c#0,-1,-2,...). (11)

n=0

Note that the hypergeometric series 2 Fi(a, b; ¢; z) is a solution of the following
linear differential equation of the second order

z(l—z)%+ {c—(a+b+ l)z}% —abw =0,

which was given by Gauss. Thereafter lots of theories and formulae involving o F}
itself have been developed. Some of important polynomials in the theory of spe-
cial functions, i.e., Bessel functions, Legendre polynomials, Hermite polynomials,
Laguerre polynomials, etc., are expressed as the o F}.

As also noted in Whittaker et al. [6, p. 281], the name ‘hypergeometric series’
was given by Wallis in 1655 to the series whose nth term is

a{a+b}{a+2b}---{a+ (n—1)b}.

Euler used the term hypergeometric in this sense, the modern use of the term being
apparently due to Kummer, Journal fiir Math. xv. (1836).

In the present note we are aiming at providing another proof of the most impor-
tant identity (4) using the theory of hypergeometric series. Some definite integrals
are also shown to be evaluated in the method here.

We first introduce one of the methods of proving the identity (4). For another
proof see Rainville (5, pp. 18-19]. Indeed, setting t = 7/(1+ 7) in (2) yields

o L p-1

B(p, Q) = 0 md’r (12)
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Then, for Re(p) > 0 and Re(q) > 0, we have

o0 00
I'(pTI'(q) = / et ! dt/ e TP ldr
0 0

[o o] OO0
= / e Pl dt (t" / e‘t”a:"_ldx) (T = tx)
0 0

(o] o0
=/ a:q'ld:c/ e~ tEtpta—1 gy
0 0

(oo wq—l [}
=| —d TPtelgr (Ha+ 1) =
A :v/o e T r (tz+1)=71)

= B(p,q)T(p+ 9),
where the identity (12) is used for the last equality.
Now we give another proof of the identity (4). Using the binomial expansion (8),
we obtain, for Re(p) > 0 and Re(q) > 0,

B(p,q) = /01 Pl 1 —1)9 tat
— ' -1 - (q—l) A"
_/0 tP 7;) ) nde
B [oe} . q-—l 1 b
_Z(_1)(n)/0t+ Lt

n=0
o0
-1\ 1
=) (1" (q n )Tﬁ’
n=0 p
where, for the third equality, we can readily justify that the order of integration

and summation is exchangeable.
In view of the identity (6) and the fundamental functional relation (3), we find
that

B(p.q) = ;(—1)" ("5t

(l-¢q)n 1
=>:( @Jn 1

= nl p+n
=i (I—Q)n F(p+'n,)
—Z nl T(p+n+1)

_ T TE+) i I'(1—q+n)(p+n)

T+ DTMI-9 & Tp+i+tn)
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from which, in terms of the second definition of 9F] in (9), we obtain

P(l;(i)l) 2F1(1-¢q,p;p+1;1)
_ T Thr+1l(g

Fp+ 1) T(p+q)I(1)
()T'(q)

" Tp+g)’

B(pv Q) =

which is the desired identity (4), and for the second equality the Gauss’s summation
theorem (10) is used.

We conclude this note by remarking that the Gauss’s summation theorem may
seem to have lots of applications in evaluations of some types of definite integrals
as well as in the theory of hypergeometric series itself.

As an illustration, we consider the following integral:

1 3
| 7w {T3)) w
0 123 2132 3 '
which was recorded in Gradshteyn et al. [4, p. 229, Entry 3.139]. Indeed,
Y ode /1 o —-1/2
= —~1)" w3n dz
/o\/l——a:3 onz:;)( )<n>
[e o]

=y (2),_ 1
n! 3n+1

n=0

n

4
= __3) (14)
Now, recalling the well-known reflection and duplication formulae:

T
sinmz

and VTI(22) = 2257 T () (z + 1/2), (15)

r(3)- 28l ) 19

T'(:)T(1 - 2) =

we readily obtain
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Finally combining (14) and (16) with the aid of (3) leads at once to (13). Similarly

we may obtain \
1
[ = wm @)} o
o Vi—zt 4Vor 4

_zdr =1£{1‘<3)}3. (18)
o V1i—z3 w4 3
For another interesting application, consider the problem which was posed by
Ananthanarayana Sastri [1, p. 80, No. 644]:
The length of the fourth positive pedal of a loop of the Lemniscate of Bernoulli
is given by

1 28dx
o V1—gz?¥
where a denotes one half of the distance between two fixed points in the definition
of the Lemniscate of Bernoulli.
Similarly as above, we evaluate this integral

1 8 ' 2
8 dx 152 1
tsa [ = e {r(3)} 1)

the numerical value of I" (1/4) being 3.625609908221--- .

18a
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