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ON ESTIMATION OF ROOT BOUNDS OF POLYNOMIALS

Hvye Kyune KiM AND YOUNG KOU PARK

ABSTRACT. In this work we will show that,in the sense of the Maximum overestima-
tion factor, the absolute root bound functional derived from the new formula for the
divided difference is better than the other known results in this area.

1. Introduction

Many researches have been done to estimate the magnitude of the changes of
the roots from the perturbed polynomials. For more informations and references
on such works, see [6,9,10,12,13]. Before proceeding,we will give short comments on
notations and some known results from the theory of divided differences. The most
detailed exposition of their properties can be found in Mile-Thomson|7].

Definition 1.1. Let p(z) be a polynomial in the complex variable z. The first
divided difference of p(2) is denoted by the relation
p(z0) — p(z1)

plzo, 2] = =—————.
“Q—z

The n-th divided difference is defined by the induction in terms of the (n-1)-th one
by the formula

plzo,... 2] = P[Zo., vy Zn-2,%3] — D20, - . -,zn-z,zn_ll. (11)

Zn — Zn-1
In order to derive a new formula for the divided difference which is useful in
studying perturbation of roots, we need the following lemma.
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Lemma 1.2 [3,7].

_ 1 p(2)
P, pn] = -%—i/r(z—m)--'(z—zn) &

where the points z, ..., z, lie inside the contour I'.

If p(z) is a polynomial of degree n, then by Newton’s interpolation formula, p(z)
can be reconstructed uniquely from the values of the divided differences at zg, ..., z,

as follows:

p(2) = plao] + plzo, 21)(z — 20) + -+ - + plzo, . . ., 20)(2 = 20) -+ - (2 — Zn—1).

For more informations and references to these discoveries, see (3,7].

Let p(z) be a polynomial of degree n. We denote the set of roots of p(z) by Q. =
{q1,...,qn}, the letters a, 3,7, ... will represent subsets of Q,,, and ||, |8],|7l,...
the number of elements in these subsets. For a C @), we denote by p[a] the divided
difference of p(z), calculated at the points ¢; € a. If @ = @, then ple] = 0. If
a, 3,7, ... are subsets of (J,,, then we shall denote by o/, 3,7, ... complements of
these subsets in Q. For any a C Q,,, we set

(z-q)*=[[Gc-a@), (z-9*=1fora=0,

g;€a ’
@-9>=Jle-@), (@-9>*=1fora=0.
g:€a
Remark 1.3. If a polynomial p(z) has multiple roots, then each root must be
counted in the set ), as many times as its multiplicity. In this case, any subset «

of (), may contain some copies of this multiple roots, while all other copies of these

multiple roots will be contained in the complement /.

Remark 1.4. Let Q, = {q1,...,¢n} be afixed set. Then for any subset {q;,q;,qk,..-} C
Qn, we shall always set 1 < j < k < --- throughout this paper.

Now we will define (g, —§)" as follows; for any subset o C 3 such that |G| =m <

n, set a = {Qal,Qaz,“'}, ﬁl = {qclvqcz"”} .C_: Q'n- Choose v = {qcfl’chz""’chlu]} g
f' so that |v| =n+ 1~ m — |a|, then we define

(qa - d)lf = (qail - del)(qagz - 66,‘2) e (qa"lvl - chl”|)
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so that i1 = ji, i2 = jg — L,...,% = Jju — |v| + 1. We also set for any a,v C Q,,
~v_ 1 for|y|=0
(9o —@)" = {0 for |v| < 0.
The next result is the new formula for the divided difference for [3] which is
basic to the results in this paper. See [8,9] for more details.

Theorem 1.5. Suppose that p(z) = (z ~ q1) -+ (2 — q,), deg r(2) <n—1, p(z) +
r(2) = (z=q1) -+ (2= Gn) and Qn = {q1,...,qn}. Then for any subset B C Q,, with
|8l = m < n, we have

1 [ G—@)(e—d)
r(B] = o ) 2’ dz (1.2)
=Y @-d* Y (-9
laf>1 vCp’
aCp lvl=n+1-m—|q]

Now we will define universal polynomials Ps(p, |g; — ¢;|) from Theorem 1.5.

Definition 1.6. Let Q, = {q1,...,¢.}, 8 C Q, and p = 0. From the above
formula, we will define universal polynomials Ps(p, |¢; — ¢;|) satisfying some specific
properties given by Tulovsky[10,11]:

Ps(plai =gl = D>_ o > (qa-9%

le|2>1 vCp
aCp jvl=n+1-m—|q|

where (¢a —0)7 = (9o, = ey | 40+ (l90s,, — 2y, 1+ 0) -

Theorem 1.7. Let p(z) = (z —q1) -+ (z — qn), 7(2) be a polynomial with degree

<n—1andp(z) =p(z) +r(z) = (2 — @) - (2 ~ Gn)-
For a given p > 0, if |g; — @] < p for all i, then for non-empty subset 8 C Qn,

I*[B]] < Ps(p,la — g5l) . (1.3)

For more informations and references to these results, see[9,10].

2. Preliminaries
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Let us begin by introducing some definitions and well known results on this field.
These are taken mainly from A.Van der Sluis[12]. For p(2) = 2™ + bp12™ 1+ - -+
b1z + bo with roots qi,. .., gn, U(p) is defined by

U(p) = maz{|ql}.

Z will denote the class of monic complex polynomials of degree n. A root-bound

functional (rbf) on = will be a real functional M such that M(p) > U(p) for all
p(z) € Z. A root bound (rb) for p(z) will be a real number m such that m > U(p).

Definition 2.1. A rbf M on Z such that M(p) = M(p) whenever p(z) = 2™ +
bno12" "1+ -+ biz+ bo, B(z) = 2" + cao12" - -+ 12+ oo with || = [b;],0 <
1 < 7n—1, is called an absolute rbf on Z.

Now, some results on this field will be presented without proof. For the proofs
and references see Van der Sluis[12].

Lemma 2.2. (Cauchy’s Theorem [6]). Let p(z) = 2" + bn—12""1 + - + b1z + bo.
If k(n) is the positive solution of the equation

K™ — |bp_1|[K™™ ' — - = [b1|K — |bo| =0, (2.1)

then all roots of p(z) lie in the disk B(0,k(n)).

Remark 2.3. [6,12]. By Cauchy’s Theorem, the unique positive root zy of z™ —
|br-1]2™"1 — .-« — |bp| = 0 is an absolute root bound functional. For any p(z)(#
z") € E, we denote the corresponding zo as B(p) = zo and also define B(z") = 0,
then B is the best absolute rbf of all absolute rbfs. While B is optimal, the positive
root zy of the equation (2.1) can’t be easily calculated.

Therefore, other more computable absolute rbfs are widely used. Next we give

examples of absolute rbfs which are well-known from the literature.

Let p(z) = 2™ + bp_12" 1 + - -+ byz + bo.

( n—1

n~1
PN if Y bl >1

=0 =0

QP =9 3 et (1)
:Izlb,-[ if Y (bl <1
\ =0 1=0
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S(p) =2ma${|bn—1|,\/|bn—2|,---, “|bl, 4 '—béd} (3)
b 2| |bs|  |bol }

T Olby_y| 2n=2l  glotl Dol 4

() = "”“””{' 25 1 2l o @

Remark 2.4. Van der Sluis [12] showed that for the absolute rbf S, S(p) < 2B(p)
for all p(z) € = and hence S is nearly optimal among all absolute rbfs.

3. Root bound of Polynomials

We will now show how a special case of Theorem 1.7 leads to an absolute rbf

that in some cases gives better estimates than the classical absolute rbfs listed in

the previous example.

Theorem 3.1. Let p(z) = (z — 20)",7(z) be a polynomial of degree < n—1 and
B(z) = p2) + 7(2) = (2= @)+~ (2 = @) If |20 — &l < p for alli, then for
B={z,...,20} with |3] = m < n, we have

< () (3.1

Conversely if (8.1) holds for all |8] #0, then we have

i). loo — &l < K(n)p, where K(n) = T

.. 1 n
Z’l).\—,y_;——l=l—n—2—6n, 0<en, <05 fO’/’TIZQ

Proof. 1). Suppose |20 —g;| < p for all 7. For any § = {z0,...,20} with |3| = m < n,
from the properties of our universal polynomial Ps(p, |g; — g;]), obviously we have

LGRS R
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Let us assume (3.1) holds. let G = {z: |z — 2| < kp} with boundary I'. By

Newton’s interpolation formula, we have
7(2) = r{z0] + (20, 20)(z — 20) + -+ + (20, ..., 20)(z — 20)" " .

For any z € I, we get the following inequality

n _ n n—
e <o (7)ot nl+ ot (7) e =l

ROy ANL

° ) = k™
of the equation;

Now, we need to find the positive solution K (n)

n—1
K" -3 (n’iz)k =0.

=0
Then clearly we can see that each §; lies in the circle |z — 20| < K(n)p. The binomial
formula gives that

n—1
K“—}:( " .)k*’=k"-{(k+1)"—k"}=2k"—(k+1)n=o. (3.2)

i n—1

Then the positive solution of (3.2) is K (n) = and we have |20—] < K(n)p.

\/‘ _
1
ii). From K(n , we have ¥/2 =1+ ———. Taylor’s Theorem gives
D ) = f - K(n) 8
1 1 In2 1 1
= <—=mh(l4+ =)< =—— f > 2.
K@)  2K%(n) ) “Rm "
Th an easily ch kthat—ﬁ——-1<R()<—n— That i IZ(n)—-1~

en we c y chec s T 3 n) <5 at is, =7

€n, 0<e€,<05 formn>2.

Now consider p(z) = z"+bn 12" 14 ..+ byz+by with roots qi, .. ., g. From the
Theorem 3.1, if |b,—;| < p* for all 4, then we get the estimate |g;| < ———p—l- for

V2 —

all 7. From the fact that p( ) and z™p(z) have the same roots except 0 for any non-

negative integer m, we may now consider 2™p(z) = 2™ (2" +bp_12" "+ - -4-by 2+bg).

Since (n) < <n+‘m>’m >0,
J J
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b _jls(n-*-m)p]_(n+m)(n+m—1).'...(n+m—j+1)p7.'
gt
So,
j!lbn—jl
m+m)n+m—-1)---(n+m-—j+1)

G

( )

< p.
Set t = n 4+ m. Then

/ ﬂ'bn—jl

K02 o Dta-1. a5+ 03

By using L’hépital’s rule, we have
im (V2 - D{tE—1)--- (¢t —j+ 1)}5 = In2.
t—00

So we have the following inequality

. 7 {/ J'lbn——jl .
> = .
tli,IEoK(t)p— o 1,...,n. (3.3)

That is, we conclude that all roots of p(z) = 2™ + bp-12""! + -+ + b1z + bp lie in

<-— I
I I— In2 llgjag(n Jlbn JI

(/ 3
H(p) = ln2 1< < '1bn—j|

So the functional

is an absolute rbf.

First of all, we give some definitions and some known results on the maximum

overestimation factor from Van der Sluis[12].

Definition 3.2. For p(z) € = and r > 0, we will denote the polynomial defined
by p"(2) = r"p(z/r). A rbf M : E — R is called homogeneous if M(p"(z)) =
rM(p(z)) for p(z) € Z and r > 0. M is called normal if i).M is a continuous rbf and
ii).M(p"(2z)) is an increasing function of r > 0 for which M(p"(2)) > inf(M(Z)).
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Definition 3.3. Mofy(t) = ¢ is called the maxi-

inf{U(p) : p(2) € E, M(p) =t}

mum overestimation factor. ( Note that if M is a homogeneous rbf on =, then
Mofu(t) is independent of ¢. In this case we will write Mof.)

Note. If p(z) € = and M(p) = t, then Mofpm(t) > . So one obtains the

b
U(p)

lower bound U(p) > whenever M(p) = t.

t
Mofum(t)
Lemma 3.4. (Van der Sluis[12])

1). For any normal absolute rbf M, Mofp(t) > Mofp(t) for the best absolute
rbf B(p).
2). If M is a homogeneous normal rbf on =, then Mofy = M(p(z)) for p(z) =

- (;Z)zn—1+...+ (n’_Ll)z+ (Z) =(z+ 1™

) 1 n . ..
3). i) Mofg = Bl e 1.4n, B(p) is homogeneous normal. ii)

Mofs =2n, S(p) is homogeneous normal.
Applying Lemma 3.4 to H(p) we obtain the following our results.

Theorem 3.5. i).H(p) is homogeneous normal.  ii). Mofy = E:,L_Q_ ~ Mofg for
n>1.

As measured by the maximum overestimation factor, H(p) performs better than
S(p). Moreover H(p) and B(p) perform similarly in this measure. Note that while
B(p) is the best absolute rbf, B(p) can’t be easily calculated. See Remark 2.3 for

more detail. Now we give an example where H(p) gives much better estimate than

S(p).

Consider p(z) = 2* — 1623 — 14622 — 2712 — 109.  From the equation K* —
16K3 — 146K2 — 271K — 109 = 0, we have

H(p) =~ 24.65, B(p) = 22.901, S(p) = 32,
Q(p) =542, R(p)=1272, T(p)=32.
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