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TWO THEOREMS FOR POISSON
MEASURES ON HYPERGROUPS

JAEWON LEE

ABSTRACT. Our first theorem is concerned with the convergence of nets of Poisson
measures on a hypergroup. As a corollary we obtain a characterization of Poisson
measures. The second theorem gives a characterization of elementary Poisson mea-
sures.

1. Introduction

Hypergroups were introduced independently by C. F. Dunkl, R. I. Jewett and
R. Spector, and successfully pursued by K. A. Ross, A. K. Chilana, H. Heyer,
W. R. Bloom , R. Lasser and others. There are many papers that are concerned
with the characterization of Poisson measures on locally compact groups, but not
on hypergroups. Qur main theorems are concerned with the convergence of nets
and the necessary and sufficient condition for Poisson measures on hypergroups.
Let G be a locally compact group. By 9®(G) we denote the space of bounded
Radon measures on G furnished with the weak topology 7., and we denote by
9! (G) the space of probability measures on G. Then the space 9!(G) is a Banach
algebra under the total variation norm. The Dirac measure in a point z € G will
be abbreviated by €.

A hypergroup G is said to be a commutative if €, * €y = €y *x €, for any z,y
in G, where the notation “x” denotes the convolution in G. Our definitions on a
hypergroup are in the sense of R. 1. Jewett[4]. Throughout in this paper, we assume
that G is a commutative and compact hypergroup. By C?(G) we denote the space of
real valued bounded continuous functions on G equipped with the supremum norm
I |lo- For any compact subgroup H of G, we shall denote the normed Haar measure
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of H by wy. Then the class MM (G) := wy * MY(G) *wy is a Banach subalgebra of
9M®(G) with the Harr measure wy as multiplicative unit with respect to convolution
* and the norm || - || of total variation. We can introduce the ezponential expy(v)
of measure v € M5 (G) by

k
124
epo(V)=wH+ZF)

k>1
where 915, (G) is the subset of positive measures in M°(G). If v € MY (G) satisfies
that for any compact subgroup H of G

WH*V *xWH =V,
we define an H-Poisson measure p with exponent v as following :

p=expy(v — |V|wn),

or
k
b= expg(A) =WH+Z%
k>1

where A = v — |[v|lwn. If p: = expgy(t)) for all real number ¢ > 0, then (u):>0
is called a H-Poisson semigroup on G. Now by Py (G) we will denote the set of
all H-Poisson measures on G. If G is a commutative compact hypergroup, by G
we denote the character group of G. For any H-Poisson measure pu, its Fourier
transform is denoted by u”. A measure p € Py (G) of the form

p=expy[y(A —wg)] with AeML(G) and >0

is called elementary if there exists an zp € G satisfying A = wy * €, *wy. In
particular, a measures u € M (G), 1 # €., is called an elementary Poisson measure
with parameter g € G if

P = €XPye) [v(€2e — €6)]
2

= 6—7 [ee + "YE:;O + %62:3 + ° ']

with some constant v > 0.



TWO THEOREMS FOR POISSON MEASURES ON HYPERGROUPS 123

II. Theorems

Suppose (Vq)aer is a net of totally finite measures such that wy * vy * wy = vg
for all @ € I where [ is any index set. Let Ay = Vg — ||V |wn for every o € I. Also

we define

u =expy(tha), t20

and
So = (#ga))tzo s S =(m)e0.

Then S, is an H-Poisson semigroup for each a. By 1¢\x - 4 we denote the measure
defined by

(Lo\m - 1) (B) = u(B) — p(BN H)

for all Borel set B and u € 9% (G). For any index set I, a net (u):er is said to
be a tight net if for every € > 0 there exists a compact subset K := K, of G and
to := to(€) € I such that 1, (K°) < € holds for all ¢ > tg and limser||u:|| < oo.

Theorem 1. Let the following two conditions be satisfied :

(i) (u&a))ag is a tight net in M (G).

(i) limger vo(G\H) < oo.

Then (a) a net (lg\g -ua)ael is tight.

(b) (Sa)acr is compact in Pu(G) with respect to the weak topology. More if v is

a weak limit point of (lg\ H: l/a) then the H-Poisson semigroup S = (ut)t>o0 18

acl’
a limit point of (Sa)acr where py = expy[t(v — ||v|lwa)).

Lemma 1. If (p(la)) is a tight net, then (pga)) is also tight for t > 0.
acl acl

Proof. Since pga) € M5 (G) for all t > 0 and & € I, without loss of generality we
may assume that v,(G\H) < ¢/2 for all a € I and for some constant c. Moreover
we can assume Vo (H) = 0, then 1g\g - ¥a = Vo. Let 0 < € < 1/3. Then there
exists a compact subset K := K, of G and an index op := ap(e) € I such that
,uga)(K) > 1—¢ for a > ay. Since H is compact we may assume KH = K. Given
0 <t<1and a €l we define

K ={zeG|u?(K)>1-¢}.
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Since

1-e < p®(K) = u{, * i (K)

= /G u (K, (dy),

we have K{® # ¢ for a > ag. Furthermore since || Aq| < 2va(G\H) < ¢, we have

wH + Z F/\,‘; — Wy
k=1

1 — wl =

Now we choose 0 < tg < 1 with toce® < 1/3, and let 0 < t < tp, @ > o and
z € K. Then

(23 [»3 C 1
lwr @K) — 5 @K < llwm — u|| < tee” < 3,

and hence

o 1 2
wi (zK) > p{® (zK) - 3> §—s>0.

Thus we have HNzK # ¢ and ¢ € K~ ! since KH = K. This proves
u(KK) > ) (aK) > 1 - .

Hence (uga))ag is a tight net for any 0 < ¢ < o and for any ¢ > 0 by Lemma 2.1{7].
|

Lemma 2. Let the following two conditions be satisfied :
(i) For anyt>0, (uﬁ"‘)) o is a tight net.

(i) Tmgeerva(G\H) < oo(.!

Then (Vo )acr ts a tight net.

Proof. Without loss of generality we may assume that v4(H) = 0. Let € > 0 and
¢ be a constant with [|[A\,]| < ¢. Then there exists a real number 0 < ¢, < 1 such
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that tge® < £/2. Since (ug”‘)) ; is a tight net by condition (i). Hence there is a
a€
compact set K := K, of G and an index aq := ao(e) € I such that

WO (C\INK] < w2 (G\K) < zeto for a> o,

Since || Aa|| £ ¢, we have: for0 <t <1,

|3 = wm) -

1=tk ,
=z 27t e
k=1
= iEAk
1 e
= k!
“’tk -2

<tZ

= te°

7 Mall*

Thus we have : for a > ag,
va(G\K) = va[(G\H)\K] = A[(G\H)\K]
1
< o= [ - wn] (GVI\E) + toe®
1 - I
< oohi (GVENK] +5 <e.
Together with condition (ii), this proves our statement. [}

Proof of theorem 1. We assume that I is a universal net. Then by Lemma 1
(pﬁ"‘)) ; is tight for t > 0. By Lemma 2 (1g\xVa). is tight and there exists
a measclﬁe v € Mt (G) such that 7, — lim, v, = v. By the weak continuity of
convolution in 90 (G) we have wy * v * wy = v. Let u; = expy[t(v — ||v|wr)] for
t > 0and S = (ut)e>0. Moreover if we can show (S,)a converges to S weakly, then
(Sa)a is compact by properties 1.2.20[2]. Now in order to show lim, S, = S, let
d >0 and € > 0. Since ||[v,|| < § and [[v]] < § for some constant c, there exists an

integer n such that IZ"Z" %V""(x)l <eand |3, %ugk(x)l <eforall0<t<d

and x € G. Then we have : for all a € I,

K00 — 0] = fe1eet 3 B — ettt 3 By

k>0 k>0

n gk
%) _ -
< kz . 7l le thvall 2k (x) ~ e ‘”""V"k(x)l + 2¢.
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Since lim, e~tlI*all = ¢=tIIl uniformly in ¢ € [0, d] and lim, v2*(x) = v"*(x) by the
weak continuity of convolution, we have :
lim ™" (x) = p(x) uniformly in ¢ € [0, d]
or,
Too = limp{™ = .
Hence the theorem is completely proved. J

Corollary 1. Let G be a hypergroup and H a compact subgroup of G. Then the
following statements are equivalent :

(i) p is an H-Poisson measure.

(i) There exist a sequence (kn)n>1 of integers and a measure u, € MY(G) such
that for all integer n,

WH * in ¥ WH = lUn, l‘l',l-c;" = U, mkn/»‘"n(G\I{) < 00.

Proof. “(i) = (ii)” If u € Py(G), then there exists a measure v € MY (G) such
that wg * v * wyg = v and p = expy (v — ||v|lwn). Let kn = n and p, =
expy (%(v — |lv|lwr)). Then we, clearly, have : u? = for all n > 1 and

/\k
WH * lbp ¥ WH = WH * (wH+Zm) *Wr

k>1
Ak
=wy+zm=,un for each n,
k>1
moreover

. . Ak
Jim [[n(pn - wa) — Al = lim > Rt =0
k>2
Hence lim,, ||, —wg|| < oo. Since ||un—wg|| = 2pn(G\H), we obtain lim,u,(G\H)
< 0.
“(ii) = (i)” Let vy, = knpn and for each n=1,2,3,---,
™ = expy (tn — [valwn)) = expg (tha(un — wi))-

Then we have :

WH * Up* = Uy, and lim,v,(G\H) < co.

Then we can obtain lim, . ||z — n§")|| = O(see in the proof of Lemma 1.11[6]).
Thus (nin)) o1 is tight and p is the weak limit point of (ng")) oy That is, by
n n>

Theorem 1 y is an H-Poisson measure. [
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Theorem 2. Let G be a compact hypergroup, p € M (G) with p # €. and 5 € G
satisfying 3 # e. Then the following statements are equivalent :
(i) 1 is an elementary Poisson measure with parameter To.
(i) For allm > 1 there ezists an n-th root u, € M(G) of u such that
(a) mnl"n({e}) =1,
(b) limn—+oo nﬂn(G\{e’ (Eo}) =0.

Proof. “(i) = (ii) ” Put pn, = expye) [2(es, —&c)]- It is clear that g = p? and
i, € MY(G) for all n. Since for each n

pn({e}) =e /" [ee + %ezo + Q:!Yniz-ewg +- ] ({e})

> e.({e})e™/» 1%

2
n(GMe,0}) = 1= " e 4 Leny 4 ey 4| (e o)
<l1—en_Te—r/n ™%,
— n ?
(a) and (b) of statement (ii) also hold.
“(i)) = (i)” Let p € M (G), p # €., with a sequence (u,)n>1 Of roots satisfying
statement (ii). For proof we will divide into a series of steps.
Step 1 : By Go we denote the subgroup of G generated by zo, and we put o, =

npn(G\{e, zo}). Clearly we obtain :

nli)r{.xo a, =0, (1)
Il'n(GO) 2> /l'n({e) .’Do}) =1~ %, (2)

and
w(Go) = u™(Go) > (1 _ 0;—")" for all n > 1. 3)

Since there exists an ng with Za < 1 for all n > ng, we have :

1—a,,§(1—%)"51 for all n > ng,
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and hence by (1) lim, 00 (1— gnn)" = 1. That is, u(Go) = 1. Since Gy is at
most countable, u, is a countable measure for all n > 1. Therefore without loss
generality we assume that G is discrete.

Step 2 : There exists an ng > 1 such that u,({e}) > 0 for all n > ng. If it were
not, then there would exist a subsequence (nk)x>1 such that u,, ({e}) = 0 for all
k > 1. This implies pp,, ({zo}) =1- O‘T’;‘L Now without loss generality we assume

(1 - %)nk > 3 for all k > 1. Then we have :
u({zg"}) = pny ({zo}™) 2 pak ({zo})
= ( - a&)nk > §
ngk — 4
for all k£ > 1. This yields zg* = xy* for all k, and hence

WD) = Jim u(l5 ) > Jim (1-%2) " 1,

i.e., i = €y, where y; = zg*. From this we obtain p, =¢€,,, yo € G for alln > 1.
Especially by our assumption % < 1, and so py, ({Zo}) > 0 for all £ > 1. Hence
we have y,, = xo for every k. On the other hand if there exists an m > 1 with
um({e}) > 0, then y,, = €. and thus g = €.. Thus if we choose ny = mq + k with
a sufficiently large myg for all £ > 1, then we obtain :

mo+1

mg+2
To 0

=g =252 =T,
i.e., To = e. But this contradicts 3 # e, so un({e}) = 0 for all n. However by
(a) of statement (ii) this is impossible, that is, there exists an ny > 1 such that
pn({e}) > 0 for all n > ng.

Step 3 : For the above ng, e € supp(u,) for n > ng and hence

supp(pin) C [supp(pn)]” = supp (u7,) = supp(k) C Go.

Furthermore we have (u2% )" = p and supp (uns,) C Go since nng > no. Hence
we can replace pn by finn, for 1 < n < ng. In this case clearly condition (b) is
preserved. So we can assume, without loss generality, that G is the discrete group
generated by zg. Thus G is cyclic and Abelian.

Step 4 : Let 4, be a adjoint measure for u, and A\, = py, * fi, for all n > 1. Then

M) = AR = (o)™, n=123--,xeG ()
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and forn=1,2,3,--,

An(G\{e, 20, 751}) = /G o Hn(GENe,30,75 ()

+ 1n(G\{e, 20, 23 })ptn ({z0}) + in(G\{e, To, 25 ' iin({e})
< 3pn(G\{e, To}) < 3nun(G\{e, z0}) -

Hence, by condition (b), we have :
Jm 2n(G\fe,50,55)) =0. ®)

Moreover by (4) it follows that the limit

M) = lim A0,  x€G (8)
exists and
M2(x) =M\x) forall xeG. 7)

Since G is discrete, G is finite or countable. If G is countable, A{(x) # 0 for
all x € G, by Theorem 4.2([5],p78), since A, has no idempotent factor. So we
have T, — lim, 00 Ap, = €¢ by Theorem 3.3([5],p76). If G is finite, there exists an
idempotent factor a € M!(G) such that o™(x) = A (x) by Theorem 3.2([5],p75).
Hence we have Ty, — lim,, A, = a by Theorem 3.3([5],p76). However supp(c) is a
subgroup of G by Theorem 3.1([5],p62) and 3 # e by condition, we must have
o = .. In any case of G we obtain Tw — limp 00 An = €.. Consequently there
exists an ng > 1 such that ||, * fin, — €el} < 1. Hence conditions of the Theorem
6.1.22 in [2] are completely held, and so p is a Poisson measure in Py} (G) with
parameter zg. [
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