J. Korea Soc. Math. Ed. Series B: The Pure and Applied Mathematics 4, No. 2 (1997) pp. 151-159

MINIMAL CLOZ-COVERS OF NON-COMPACT SPACES

CHANG IL KIM

ABSTRACT. Observing that for any dense weakly Lindelöf subspace of a space Y, X is Z#-embedded in Y, we show that for any weakly Lindelöf space X, the minimal Cloz-cover ($E_{cc}(X)$, z_X) of X is given by $E_{cc}(X) = \{(\alpha, x) : \alpha \text{ is a G}(X)\text{-ultrafilter on X with } x \in \cap \alpha\}$, $z_X((\alpha, x)) = x$, z_X is Z#-irreducible and $E_{cc}(X)$ is a dense subspace of $E_{cc}(\beta X)$.

1. Introduction

All spaces in this paper are Tychonoff and βX denotes the Stone-Čech compactification of a space X.

In [5], it is shown that the minimal cloz-cover $(E_{cc}(X), z_X)$ of a compact space X is characterized as follows:

 $E_{cc}(X)$ is the space $\{(\alpha, x) : \alpha \text{ is a } G(X)\text{-ultrafilter on } X \text{ with } x \in \cap \alpha\}$ which is a subspace of $\mathcal{L}(G(X)) \times X$ and $z_X((\alpha, x)) = x$,

where $\mathcal{L}(G(X))$ is the ultrafilter-space of G(X). In [9] ([4], resp.), a theory of the minimal basically disconnected cover $(\Lambda X, \Lambda_X)$ (quasi-F cover $(QF(X), \Phi_X)$, resp.) of a Tychonoff space X is developed and the relation between ΛX and $\Lambda \beta X$ (QF(X) and QF(βX), resp.) is explored. In [6], the minimal basically disconnected (quasi-F, resp.) cover of a locally weakly Lindelöf space X is characterized by the filter space $\Lambda X = \{\alpha : \alpha \text{ is a fixed } \sigma Z(X)^{\#}\text{-ultrafilter on } X\}$ (QF(X) = $\{\alpha : \alpha \text{ is a fixed } Z(X)^{\#}\text{-ultrafilter on } X\}$, resp.).

In this paper, we show that every (non-compact) weakly Lindelöf space X has the minimal cloz-cover $(E_{cc}(X), z_X)$ and that $E_{cc}(X)$ is characterized by the space $\{(\alpha, x) : \alpha \text{ is a } G(X)\text{-ultrafilter on X with } x \in \cap \alpha\}$ which is a dense subspace of

Received by the editors Oct. 29, 1997.

¹⁹⁹¹ Mathematics Subject classification. 54C10, 54D80, 54G05.

Key words and phrases. cloz-space, quasi-F space, covering map, minimal cover.

This work was supported by Research Funds from Dankook university.

 $E_{cc}(\beta X)$. Moreover, we find suitable conditions for a space for which the minimal cloz-cover is basically disconnected. For the terminology, we refer to [1] and [7]

2. Covering maps and Z#-irreducible maps

Definition 2.1. Let $f: X \longrightarrow Y$ be a continuous map. Then f is said to be

- (a) perfect if f is closed and for any $y \in Y$, $f^{-1}(y)$ is a compact subset in X,
- (b) irreducible if f is onto and for any closed set A in X with $A \neq X$, $f(A) \neq Y$, and
 - (c) a covering map if f is a perfect irreducible map.

Proposition 2.2. Consider the following commutative diagram:

$$Z \xrightarrow{f} X$$

$$j_1 \downarrow \qquad \qquad j_2 \downarrow$$

$$W \xrightarrow{g} Y.$$

where f, g are continuous maps and j_1, j_2 are dense embeddings. Then we have the following:

- (a) if f and g are perfect onto maps, then g(W Z) = Y X,
- (b) if g is a covering map and f is a perfect onto map, then f is a covering map, and
- (c) if W, Y are compact spaces and f is a covering map, then g is also a covering map.
- proof. (a) It is trivial ([7]).
- (b) Take any closed set A in W with $f(A \cap Z) = X$. By (a), $g^{-1}(X) = Z$ and hence $X = f(A \cap Z) = g(A \cap g^{-1}(X)) = g(A) \cap X$. Thus $X \subseteq g(A)$. Since X is dense in Y and g(A) is closed, g(A) = Y. Since g is irreducible, A = W and so $A \cap Z = Z$. Thus f is irreducible.
- (c) Clearly g is a perfect continuous map. Since $g(W) = g(\operatorname{cl}_W(Z)) = \operatorname{cl}_Y(g(Z)) = \operatorname{cl}_Y(f(Z)) = \operatorname{cl}_Y(X) = Y$, g is onto. Take any closed set A in W with $A \neq W$. Then $A \cap Z \neq Z$ and hence $f(A \cap Z) \neq X$. Since $f(A \cap Z) = g(A) \cap X$ by (a), $g(A) \cap X \neq X$; hence $g(A) \neq Y$. Thus g is irreducible.

Notation 2.3. For any space X, let

- (a) $C(X) = \{f : f : X \longrightarrow R \text{ is a continuous map}\}$ and $C^*(X) = \{f : f : X \longrightarrow R \text{ is a bounded continuous map}\}$, where R is the space of real numbers endowed with the usual topology,
- (b) for any $f \in C(X)$, $f^{-1}(0) = Z(f)$ which will be called a zero-set in X, and complements of zero-sets in X will be called cozero-sets in X,
 - (c) $Z(X) = \{Z : Z \text{ is a zero-set in } X\},$
 - (d) $Z(X)^{\#} = \{ cl_X (int_X (A)) : A \in Z(X) \},$
 - (e) $B(X) = \{B : B \text{ is a clopen set in } X\}$, and
 - (f) $R(X) = \{A : A \text{ is a regular closed set in } X\},$

It is well-known that R(X) is a complete Boolean algebra under the inclusion relation and B(X), $Z(X)^{\#}$ are sublattices of R(X) and that for any covering map $f: X \longrightarrow Y$, the map $\phi: R(X) \longrightarrow R(Y)$, defined by $\phi(A) = f(A)$, is a Boolean isomorphism. Moreover for any dense subspace Y of a space X, the $\psi: R(X) \longrightarrow R(Y)$, defined by $\psi(A) = A \cap Y$, is a Boolean algebra isomorphism ([6]).

In a lattice, meets and joins will be denoted by \wedge and \vee , respectively and for any map $f: X \longrightarrow Y$ and $\mathcal{B} \subseteq 2^X$, let $f(\mathcal{B}) = \{f(B) : B \in \mathcal{B}\}$.

Definition 2.4. A covering map $f: X \longrightarrow Y$ is said to be $\mathbb{Z}^{\#}$ -irreducible if $f(\mathbb{Z}(X)^{\#}) = \mathbb{Z}(Y)^{\#}$.

We note that for any covering map $f: X \longrightarrow Y$, $Z(Y)^{\#} \subseteq f(Z(X)^{\#})$ and hence f is $Z^{\#}$ -irreducible if and only if $Z(Y)^{\#} \supseteq f(Z(X)^{\#})$.

Proposition 2.5. Let $g: Y \longrightarrow W$, $h: W \longrightarrow X$ be covering maps. Then $h \circ g$ is $Z^{\#}$ -irreducible if and only if h and g are $Z^{\#}$ -irreducible.

proof. Assume that $h \circ g$ is $Z^{\#}$ -irreducible and take any $A \in Z(Y)^{\#}$, then there is $B \in Z(X)^{\#}$ with $h \circ g(A) = B$; $h(g(A)) = B = h(\operatorname{cl}_W(h^{-1}(\operatorname{int}_X(B))))$. Since h is a covering map and g(A), $\operatorname{cl}_W(h^{-1}(\operatorname{int}_X(B)))$ are regular closed in W, $\operatorname{cl}_W(h^{-1}(\operatorname{int}_X(B))) = g(A)$. Since $\operatorname{cl}_W(h^{-1}(\operatorname{int}_X(B))) = \operatorname{cl}_W(\operatorname{int}_W(h^{-1}(B)))$, $g(A) \in Z(W)^{\#}$. Thus g is $Z^{\#}$ -irreducible.

Take any $A \in Z(W)^{\#}$. Since g is a covering map, $\operatorname{cl}_{Y}(g^{-1}(\operatorname{int}_{W}(A))) \in Z(Y)^{\#}$. Since $h \circ g$ is $Z^{\#}$ -irreducible, $h \circ g(\operatorname{cl}_{Y}(g^{-1}(\operatorname{int}_{W}(A)))) \in Z(X)^{\#}$. But $h \circ g(\operatorname{cl}_{Y}(g^{-1}(\operatorname{int}_{W}(A)))) = h(A)$. Thus h is $Z^{\#}$ -irreducible. The converse is immediate from the definition.

Definition 2.6. Let Y be a space and X a subspace of Y. Then X or $j: X \hookrightarrow Y$ is said to be $Z^{\#}$ -embedded in Y if for any $A \in Z(X)^{\#}$, there is a $B \in Z(Y)^{\#}$ such that $A = B \cap X$.

Proposition 2.7. Consider the following commutative diagram:

$$P \xrightarrow{f} X$$

$$j_1 \downarrow \qquad \qquad j_2 \downarrow$$

$$Y \xrightarrow{g} W$$

where j_1 , j_2 are dense embeddings and f, g are covering maps. Then g is $Z^\#$ -irreducible and j_1 is $Z^\#$ -embedded if and only if f is $Z^\#$ -irreducible and j_2 is $Z^\#$ -embedded.

proof. (\Longrightarrow) Take any $A \in Z(P)^{\#}$. Since j_1 is $Z^{\#}$ -embedded, there is a $B \in Z(Y)^{\#}$ such that $A = B \cap P$. Note that $f(A) = f(B \cap P) = g(B) \cap X$. Since g is $Z^{\#}$ -irreducible, $f(A) \in Z(X)^{\#}$. Thus f is $Z^{\#}$ -irreducible. Let $C \in Z(X)^{\#}$. Then $\operatorname{cl}_P(f^{-1}(\operatorname{int}_X(C))) \in Z(P)^{\#}$. Since j_1 is $Z^{\#}$ -embedded, there is a $D \in Z(Y)^{\#}$ such that $D \cap P = \operatorname{cl}_P(f^{-1}(\operatorname{int}_X(C)))$. Then $C = f(D \cap P) = g(D) \cap X$. Since g is $Z^{\#}$ -irreducible, $g(D) \in Z(X)^{\#}$; therefore j_2 is $Z^{\#}$ -embedded.

(\iff) Take any $A \in Z(Y)^{\#}$. Then $A \cap P \in Z(P)^{\#}$ for P is dense in Y and $f(A \cap P) = g(A \cap P) = g(A) \cap X$. Since f is $Z^{\#}$ -irreducible, $g(A) \cap X \in Z(X)^{\#}$. Since j_2 is $Z^{\#}$ -embedded, there is a $B \in Z(W)^{\#}$ with $g(A) \cap X = B \cap X$. Since j_2 is a dense embedding and g(A), B are regular closed, g(A) = B. Thus g is $Z^{\#}$ -irreducible.

Take any $C \in Z(P)^{\#}$. Since f is $Z^{\#}$ -irreducible, $f(C) \in Z(X)^{\#}$. Since j_2 is $Z^{\#}$ -embedded, there is a $D \in Z(W)^{\#}$ with $f(C) = D \cap X$. Since g is a covering map, $\operatorname{cl}_Y(g^{-1}(\operatorname{int}_W(D))) \in Z(Y)^{\#}$. Then $f(\operatorname{cl}_Y(g^{-1}(\operatorname{int}_W(D))) \cap P) = g(\operatorname{cl}_Y(g^{-1}(\operatorname{int}_W(D)))) \cap X = D \cap X = f(C)$. Hence $\operatorname{cl}_Y(g^{-1}(\operatorname{int}_W(D))) \cap P = C$. Thus j_1 is $Z^{\#}$ -embedded.

Definition 2.8. A pair (Y, f) is said to be a *cover* of a space X if $f: Y \longrightarrow X$ is a covering map.

Let X, Y be spaces and $f: X \longrightarrow Y$ a continuous map. For any $U \subseteq Y$, let $f_U: f^{-1}(U) \longrightarrow U$ be the restriction and corestriction of f with respect to $f^{-1}(U)$ and U, respectively.

Lemma 2.9. Let X be a space and (E, f) a cover of βX . Then $(f^{-1}(X), f_X)$ is also a cover of X.

proof. Clearly, we have a pullback diagram:

$$f^{-1}(X) \xrightarrow{f_X} X$$

$$\downarrow j \qquad \qquad \beta_X \downarrow \qquad \qquad \beta_X \downarrow \qquad \qquad F \xrightarrow{f} \beta X.$$

Since f is perfect, f_X is also perfect and clearly, f_X is onto. Since X is dense in βX and f is a covering map, $f^{-1}(X)$ is dense in E. Thus j is a dense embedding and hence f_X is a covering map by Proposition 2.2.

3. Minimal Cloz-covers of non-compact spaces

Definition 3.1. Let X be a space.

- (a) A cozero-set C in X is said to be a *complemented cozero-set* if there is a cozero-set D in X such that $C \cap D = \emptyset$ and $C \cup D$ is dense in X. In case, $\{C, D\}$ is called a *complementary pair of cozero-sets* in X.
 - (b) $G(X) = \{cl_X(C) : C \text{ is a complemented cozero-set in } X\}.$

For any space X, $G(X) = \{A \in Z(X)^{\#} : A' \in Z(X)^{\#}\}$, where A' denotes the complement of A in R(X), that is, $A' = cl_X(X - A)$ and G(X) is a subalgebra of R(X) ([5]).

Recall that a subspace Y of a space X is called C*-embedded in X if for any $f \in C^*(Y)$, there is a $g \in C^*(X)$ with $g|_{Y} = f$.

Definition 3.2. A space X is said to be

- (a) a cloz-space if G(X)=B(X), and
- (b) a quasi-F space if every dense cozero-set in X is C*-embedded, equivalently, for any zero-sets Z_1 , Z_2 in X such that $\operatorname{int}_X(Z_1) \cap \operatorname{int}_X(Z_2) = \emptyset$, $\operatorname{cl}_X(\operatorname{int}_X(Z_1)) \cap \operatorname{cl}_X(\operatorname{int}_X(Z_2)) = \emptyset$.

Proposition 3.3. (a) A space X is a cloz-space if and only if every element of X has a cloz open neighborhood.

- (b) Every dense Z#-embedded subspace of a cloz-space is again a cloz-space.
- proof. (a) (\Longrightarrow) It is trivial.
- (\iff) Let $\{C, D\}$ be a complemented pair of cozero-sets in X and $x \in \operatorname{cl}_X(C)$. Let V be a cloz open neighborhood of x in X. Since $\operatorname{cl}_V((C \cup D) \cap V) = \operatorname{cl}_X(C \cup D) \cap V = X \cap V = V$, $\{C \cap V, D \cap V\}$ is a complemented pair of cozero-sets in V. Since V is a cloz-space, $\operatorname{cl}_V(C \cap V)$ is clopen in V. Moreover, $\operatorname{cl}_X(C) \cap V = \operatorname{cl}_V(C \cap V) = \operatorname{int}_V(\operatorname{cl}_V(C \cap V)) = \operatorname{int}_X(\operatorname{cl}_X(C)) \cap V$. Hence $x \in \operatorname{int}_X(\operatorname{cl}_X(C))$. Thus $\operatorname{cl}_X(C)$ is again clopen in X and therefore X is a cloz-space.
- (b) Let Y be a cloz-space and X a dense $Z^\#$ -embedded subspace of Y. Let $\{C, D\}$ be a complemented pair of cozero-sets in X. Since $G(X) \subseteq Z(X)^\#$ and X is $Z^\#$ -embedded in Y, there are A, $B \in Z(Y)^\#$ with $cl_X(C) = A \cap X$ and $cl_X(D) = B \cap X$. Note that

$$\emptyset = \operatorname{cl}_X(C) \wedge \operatorname{cl}_X(D) = (A \cap X) \wedge (B \cap X)$$

$$= \operatorname{cl}_X(\operatorname{int}_X((A \cap X) \cap (B \cap X))) = \operatorname{cl}_X(\operatorname{int}_X((A \cap B) \cap X))$$

$$= \operatorname{cl}_X(\operatorname{int}_Y(A \cap B) \cap X) = \operatorname{cl}_Y(\operatorname{int}_Y(A \cap B)) \cap X = (A \wedge B) \cap X.$$

Since X is dense in Y, $A \wedge B = \emptyset$. Since $X = X \cap Y = (A \cup B) \cap X$, $Y = A \cup B$. Hence A' = B. Thus $A \in G(Y)$. Since Y is a cloz-space, A is clopen in Y and hence $cl_X(C)$ is clopen in X.

Definition 3.4. Let \underline{C} be a full subcategory of the category \underline{Tych} of Tychonoff spaces and continuous maps and $X \in \underline{Tych}$. Then

- (a) a pair (Y, f) is called a \underline{C} -cover of X if (Y, f) is a cover of X and $Y \in \underline{C}$,
- (b) a C-cover (Y, f) is called a *minimal* C-cover of X if for any C-cover (Z, g) of X, there is a covering map $h: Z \to Y$ with $f \circ h = g$.

Lemma 3.5. ([6]) Let \underline{C} be a full subcategory of \underline{Tych} such that $Y \in \underline{C}$ if and only if $\beta Y \in \underline{C}$. Suppose that $X \in \underline{Tych}$ and (E, f) is a minimal \underline{C} -cover of βX . If $f^{-1}(X) \in \underline{C}$, then $(f^{-1}(X), f_X)$ is a minimal \underline{C} -cover of X.

Let <u>Cloz</u> (QF, resp.) denote the full subcategory of <u>Tych</u> determined by cloz-spaces (quasi-F spaces, resp).

It is known that every compact space X has the minimal Cloz-cover $(E_{cc}(X), z_X)$ and moreover $E_{cc}(X) = \{(\alpha, x) : \alpha \text{ is a } G(X)\text{-ultrafilter on X with } x \in \cap \alpha\}$ and $z_X((\alpha, x)) = x$ ([5]). It is a natural question whether every space has a Cloz-cover. We will give some partial answers for this problem in this section.

Definition 3.6. A space X is said to be weakly Lindelöf if for any open cover \mathcal{U} of X, there is a countable subfamily \mathcal{V} of \mathcal{U} such that $\cup \mathcal{V}$ is dense in X and a space X is called locally weakly Lindelöf if every element of X has a weakly Lindelöf neighborhood.

In [3], the minimal QF-cover (QF(X), Φ_X) of a compact space X is constructed as an inverse limit space and in [8], Vermeer constructed the minimal QF-cover (QF(X), Φ_X) of arbitrary space X. In [4] ([6], resp), the minimal QF-cover (QF(X), Φ_X) of a compact (locally weakly Lindelöf, resp.) space X is characterized by QF(X) = $\{\alpha : \alpha \text{ is a fixed Z(X)}^\#$ -ultrafilter on X $\}$ and $\Phi_X(\alpha) = \cap \alpha$. Moreover, Φ_X is Z(X) $^\#$ -irreducible if X is compact ([4]).

For any space X, let $(QF(\beta X), \Phi_{\beta})$ $((E_{cc}(\beta X), z_{\beta}), resp.)$ denote the minimal QF(Cloz, resp.)-cover of βX .

Theorem 3.7. Let X be a space such that $\Phi_{\beta}^{-1}(X)$ is $Z^{\#}$ -embedded in $QF(\beta X)$. Then $(z_{\beta}^{-1}(X), z_{\beta_X})$ is the minimal <u>Cloz</u>-cover of X, $z_{\beta}^{-1}(X)$ is dense in $E_{cc}(\beta X)$ and z_{β_X} is $Z^{\#}$ -irreducible.

proof. Clearly, $z_{\beta}^{-1}(X)$ is dense in $E_{cc}(X)$. Since every quasi-F space is a cloz-space, there is a covering map $g: QF(\beta X) \longrightarrow E_{cc}(\beta X)$ with $z_{\beta} \circ g = \Phi_{\beta}$. Since the following diagram

$$z_{\beta}^{-1}(X) \xrightarrow{z_{\beta_X}} X$$

$$j_2 \downarrow \qquad \qquad \beta \downarrow$$

$$E_{cc}(\beta X) \xrightarrow{z_{\beta}} \beta X$$

is a pullback, there is a unique continuous map $g^0:\Phi_{\beta}^{-1}(X)\longrightarrow z_{\beta}^{-1}(X)$ such that $z_{\beta_X}\circ g^0=\Phi_{\beta_X}$ and $g\circ j_1=j_2\circ g^0$, where $j_1:\Phi_{\beta}^{-1}(X)\hookrightarrow \mathrm{QF}(\beta X)$ is the inclusion map. Since j_1,β are $Z^\#$ -embedded and Φ_{β} is $Z^\#$ -irreducible, by Proposition 2.7, Φ_{β_X} is $Z^\#$ -irreducible. Let $a\in Z_{\beta}^{-1}(X)$. Then there is $b\in \mathrm{QF}(\beta X)$ with g(b)=a. Hence $\Phi_{\beta}(b)=z_{\beta}(g(b))=z_{\beta}(a)\in X$ and so $b\in \Phi_{\beta}^{-1}(X)$. Hence $g(b)=g^0(b)=a$. Thus g^0 is onto. Since $z_{\beta_X}\circ g^0=\Phi_{\beta_X}$ is a covering map, by Proposition 2.2, g^0 is a covering map. Since $z_{\beta_X}\circ g^0=\Phi_{\beta_X}$ is $Z^\#$ -irreducible, by Proposition 2.5, z_{β_X} and g^0 are $Z^\#$ -irreducible. Consider the following commutative diagram:

$$\begin{array}{ccc} \Phi_{\beta}^{-1}(X) & \stackrel{g^0}{-\!\!\!-\!\!\!-\!\!\!-} & z_{\beta}^{-1}(X) \\ & & & & & \\ j_1 \downarrow & & & & j_2 \downarrow \\ QF(\beta X) & \stackrel{g}{-\!\!\!\!-\!\!\!-} & E_{cc}(\beta X). \end{array}$$

By Proposition 2.7, j_2 is Z[#]-embedded. So, by Proposition 3.3, $z_{\beta}^{-1}(X)$ is a cloz-space. Thus, by Lemma 3.5, $(z_{\beta}^{-1}(X), z_{\beta_X})$ is the minimal <u>Cloz</u>-cover of X.

Recall that a dense weakly Lindelöf subspace of a space is $Z^{\#}$ -embedded and that for any covering map $f: X \longrightarrow Y$ such that Y is weakly Lindelöf, X is weakly Lindelöf ([4]). Using this, we have the following corollary:

Corollary 3.8. For a weakly Lindelöf space X, $(z_{\beta}^{-1}(X), z_{\beta_X})$ is the minimal <u>Cloz</u>-cover of X and z_{β_X} is $Z^{\#}$ -irreducible.

For any weakly Lindelöf space X, $(E_{cc}(X), z_X)$ denotes the minimal <u>Cloz</u>-cover of X.

For any space X, the isomorphism $\psi: R(\beta X) \longrightarrow R(X)$ ($\psi(A) = A \cap X$, $A \in R(\beta X)$) induces a lattice isomorphism $G(\beta X) \longrightarrow G(X)$. Thus $(\alpha, x) \in z_{\beta}^{-1}(X)$ if and only if $\alpha_X = \{A \cap X : A \in \alpha\}$ is a G(X)-ultrafilter and $x \in \cap \alpha_X$. Therefore we have the following corollary:

Corollary 3.9. For any weakly Lindelöf space X, $E_{cc}(X)$ is the space $\{(\alpha, x) : \alpha \text{ is a } G(X)\text{-ultrafilter on } X \text{ with } x \in \alpha\}$ which is a subspace of $\mathcal{L}(G(X)) \times X$, where $\mathcal{L}(G(X))$ is the ultrafilter space of G(X).

Definition 3.10. A space X is said to be a *basically disconnected space* if for any zero-set Z in X, $int_X(Z)$ is closed in X.

Recall that a sublattice A of R(X) is called σ -complete if it is closed under countable joins and meets.

Proposition 3.11. Let X be a weakly Lindelöf space. Then the following are equivalent:

- (1) $G(X) = Z(X)^{\#}$,
- (2) $G(X) = \{cl_X(C) : C \text{ is a cozero-set in } X\},$
- (3) $G(E_{cc}(X)) = Z(E_{cc}(X))^{\#}$,
- (4) $E_{cc}(X)$ is basically disconnected,

- (5) $Z(X)^{\#}$ is a σ -complete Boolean subalgebra of R(X),
- Proof. (1) ⇒ (2) Clearly, $G(X) \subseteq \{cl_X(C) : C \text{ is a cozero-set in } X\}$. Let C be a cozero-set in X, then $cl_X(int_X(X C)) \in Z(X)^\# = G(X)$ and hence $cl_X(X cl_X(X C)) = cl_X(C) \in G(X)$.
- $(2) \Rightarrow (3)$ Let $A \in Z(E_{cc}(X))^{\#}$. Since z_X is $Z^{\#}$ -irreducible, $z_X(A) \in Z(X)^{\#}$ and hence $z_X(A)' = z_X(A') \in G(X) \subseteq Z(X)^{\#}$. Hence $A' \in Z(E_{cc}(X))^{\#}$ and so $A \in G(E_{cc}(X))$.
- $(3) \Rightarrow (4)$ Let Z be a zero-set in $E_{cc}(X)$, then by (3), $cl_{E_{cc}(X)}(int_{E_{cc}(X)}(Z)) \in G(E_{cc}(X))$. Since $E_{cc}(X)$ is a cloz-space, $cl_{E_{cc}(X)}(int_{E_{cc}(X)}(Z))$ is clopen in $E_{cc}(X)$ and hence $int_{E_{cc}(X)}(Z)$ is closed. Thus $E_{cc}(X)$ is basically disconnected.
- (4) \Rightarrow (5) Since z_X is Z#-irreducible, $z_X(Z(E_{cc}(X))^{\#}) = Z(X)^{\#}$ and since $E_{cc}(X)$ is basically disconnected, $Z(E_{cc}(X))^{\#}$ is a σ -complete Boolean subalgebra of $R(E_{cc}(X))$ and hence $Z(X)^{\#}$ is a σ -complete Boolean subalgebra of R(X).
 - $(5) \Rightarrow (1)$ Since $Z(X)^{\#}$ is a subalgebra of R(X), $G(X) = Z(X)^{\#}$.

REFERENCES

- J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and concrete categories, John Wiley and Sons Inc., New York, 1990.
- 2. R. L. Blair, Spaces in which special sets are Z-embedded, Canad. J. Math. 28 (1976), 673-690.
- F. Dashiell, A. W. Hager and M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685.
- M. Henriksen , J. Vermeer, and R. G. Woods, Quasi-F-covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), 779-804.
- Wallman covers of compact spaces, Dissertationes Mathematicae, 283 (1989), 5-31.
- 6. C. I. Kim, Minimal covers and filter spaces, Topol. and its Appl., to appear.
- J. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer, Berlin, 1988.
- 8. J. Vermeer, On perfect irreducible preimage, Topology Proc. 9 (1984), 173-189.
- 9. ______, The smallest basically disconnected preimage of a space, Topol. Appl. 17 (1984), 217-232.

Department of Mathematics Education, Dankook University, Seoul 140-714, Korea.