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MINIMAL CLOZ-COVERS OF NON-COMPACT SPACES

CHaNG IL KM

ABSTRACT. Observing that for any dense weakly Lindelof subspace of a space Y, X
is Z#-embedded in Y, we show that for any weakly Lindelof space X, the minimal
Cloz-cover (Ecc(X), zx ) of X is given by Ece(X) = {(a, z) : « is a G(X)-ultrafilter on
X with z € Na}, zx ((a, ) = x, zx is Z#-irreducible and E..(X) is a dense subspace
of Ece(6X).

1. Introduction

All spaces in this paper are Tychonoff and 83X denotes the Stone-Cech compact-
ification of a space X.

In [5], it is shown that the minimal cloz-cover (Ec.(X), 2x) of a compact space
X is characterized as follows:

E..(X) is the space {(o, z) : a is a G(X)-ultrafilter on X with z € Na}

which is a subspace of £(G(X)) x X and zx((a, z)) = =,
where L£(G(X)) is the ultrafilter-space of G(X). In [9] ([4], resp.), a theory of the
minimal basically disconnected cover (AX, Ax) (quasi-F cover (QF(X), ®x), resp.)
of a Tychonoff space X is developed and the relation between AX and ASX (QF(X)
and QF(5X), resp.) is explored. In [6], the minimal basically disconnected (quasi-
F, resp.) cover of a locally weakly Lindelof space X is characterized by the filter
space AX = {a: a is a fixed 0Z(X)#-ultrafilter on X} (QF(X) = {a: a is a fixed
Z(X)#-ultrafilter on X}, resp.).

In this paper, we show that every (non-compact) weakly Lindelof space X has
the minimal cloz-cover (E..(X), zx) and that E..(X) is characterized by the space
{{a,z) : @ is a G(X)-ultrafilter on X with £ € Na} which is a dense subspace of
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E..(8X). Moreover, we find suitable conditions for a space for which the minimal
cloz-cover is basically disconnected. For the terminology, we refer to [1] and [7]

2. Covering maps and Z#-irreducible maps

Definition 2.1. Let f : X — Y be a continuous map. Then f is said to be
(a) perfectif f is closed and for any y € Y, f~!(y) is a compact subset in X,
(b) irreducible if f is onto and for any closed set A in X with A # X,

f(A)#Y, and
(c) a covering map if f is a perfect irreducible map.

Proposition 2.2. Consider the following commutative diagram:

Z——f——>X

jll 1'21
w —2, Y,
where f,g are continuous maps and ji, jo are dense embeddings. Then we have
the following:
(a) if f and g are perfect onto maps, then g(W - Z) = Y - X,
(b) if g is a covering map and f i3 a perfect onto map, then f is a covering
map, and
(c) if W, Y are compact spaces and f is a covering map, then g is also a covering
map.

proof. (a) It is trivial ([7]).

(b) Take any closed set A in W with f(ANZ) =X. By (a), g7*(X) =Z and
hence X = f(ANZ) = g(ANg X)) =g(A) NX. Thus X C g(A). Since X is
dense in Y and g(A) is closed, g(A) =Y. Since g is irreducible, A = W and so A
N Z = Z. Thus f is irreducible.

(c) Clearly g is a perfect continuous map. Since g(W) = g(clw (Z)) = cly (¢(Z))
= cly(f(Z)) = cly(X) =Y, g is onto. Take any closed set A in W with A # W.
Then A N Z # Z and hence f(A N Z) # X. Since f(A N Z) = g(A) N X by (a),
g9(A) N X # X; hence g(A) # Y. Thus g is irreducible.
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Notation 2.3. For any space X, let

(a) C(X)={f:f:X— Risa continuous map} and C*(X) ={f : f : X
— R is a bounded continuous map}, where R is the space of real numbers endowed
with the usual topology,

(b) for any f € C(X), f~1(0) = Z(f) which will be called a zero-set in X, and
complements of zero-sets in X will be called cozero-sets in X,

(c) Z(X) ={Z :Zis a zero-set in X },

(d) Z(X)* = {clx (intx(A)) : A € Z(X)},

(e) B(X) ={B: Bis a clopen set in X}, and

(f) R(X) ={A : A is a regular closed set in X},

It is well-known that R(X) is a complete Boolean algebra under the inclusion
relation and B(X), Z(X)# are sublattices of R(X) and that for any covering map
f:X— Y, the map ¢ : R(X) — R(Y), defined by ¢(A) = f(A), is a Boolean
isomorphism. Moreover for any dense subspace Y of a space X, the ¢ : R(X) —
R(Y), defined by v(A) = AN Y, is a Boolean algebra isomorphism ([6]).

In a lattice, meets and joins will be denoted by N and V, respectively and for any
map f : X — Y and B C 2X, let f(B) = {f(B) : B € B}.

Definition 2.4. A covering map f : X — Y is said to be Z#-irreducible if
FZ(X)#*) = Z(Y)*.

We note that for any covering map f: X — Y, Z(Y)# C f(Z(X)#) and hence
f is Z#-irreducible if and only if Z(Y)* D f(Z(X)#).

Proposition 2.5. Letg : Y — W, h : W — X be covering maps. Then hog
is Z# -irreducible if and only if h and g are Z# -irreducible.

proof. Assume that hog is Z#-irreducible and take any A € Z(Y)¥#, then there is B
€ Z(X)# with hog(A) = B; h(g(A)) = B = h(clw (h~(intx (B)))). Since h is a cov-
ering map and g(A), clw (h~*(int x (B))) are regular closed in W, cly (A~ (int x (B)))
= g(A). Since cly (b~ (intx (B))) = clw (intw (A~1(B))), g(A) € Z(W)#. Thus g
is Z#-irreducible.

Take any A € Z(W)#. Since g is a covering map, cly (9~ (intw (A))) € Z(Y)*.
Since ho g is Z#-irreducible, ho g(cly (g~ (intw (A)))) € Z(X)*. But kog(cly (g
(intw (A)))) = h(g(cly (¢~ (intw (A))))) = h(A). Thus h is Z#-irreducible. The
converse is immediate from the definition.
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Definition 2.6. Let Y be a space and X a subspace of Y. ThenXorj: X — Y
is said to be Z#-embedded in Y if for any A € Z(X)#, there is a B € Z(Y)# such
that A=BnX.

Proposition 2.7. Consider the following commutative diagram :

P-—f——)X

W a

Yy 2w,

where j1, jo are dense embeddings and f, g are covering maps. Then g is Z#-
irreducible and j, is Z#-embedded if and only if f is Z#-irreducible and jo is Z#-
embedded.

proof. (=>) Takeany A € Z(P)#. Since j; is Z#-embedded, there isa B € Z(Y)#
such that A = B N P. Note that f(A) = f(B N P) = g(B) N X. Since g is Z#-
irreducible, f(A) € Z(X)#. Thus f is Z#-irreducible. Let C € Z(X)#. Then
clp(f~Y(intx(C))) € Z(P)¥#. Since j; is Z#-embedded, there is a D € Z(Y)# such
that D N P = clp(f~(intx(C))). Then C = f(D N P) = g(D) N X. Since g is
Z*#-irreducible, g(D) € Z(X)#; therefore j; is Z#-embedded.

(¢=) Take any A € Z(Y)#. Then A N P € Z(P)¥ for P is dense in Y and
f(ANP)=g(ANP)=g(A)NX. Since f is Z*-irreducible, g(A) N X € Z(X)*.
Since j, is Z#-embedded, there is a B € Z(W)# with g(A) N X = BN X. Since
Jj2 is a dense embedding and g(A), B are regular closed, g(A) = B. Thus g is
Z#-irreducible, :

Take any C € Z(P)#. Since f is Z#-irreducible, f(C) € Z(X)¥. Since j; is Z#-
embedded, there is a D € Z(W)# with f(C) = D N X. Since g is a covering map,
cly (g7 ! (intw(D))) € Z(Y)#. Then f(cly(¢~(intw (D))) N P) = g(cly (g~ (intw
(D)) N X =D N X =f(C). Hence cly(g~(intw(D))) N P = C. Thus j is
Z#-embedded.

Definition 2.8. A pair (Y, f) is said to be a cover of a space Xif f: Y — X is
a covering map.

Let X, Y be spacesand f: X — Y a continuous map. Forany UCY, let fy :
F71(U) — U be the restriction and corestriction of f with respect to f~!(U) and
U, respectively.
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Lemma 2.9. Let X be a space and (E, f) a cover of BX. Then (f~1(X), fx) is
also a cover of X.

proof. Clearly, we have a pullback diagram:

X)) L

jl ﬁxl
E —L. x

Since f is perfect, fx is also perfect and clearly, fx is onto. Since X is dense in
BX and f is a covering map, f~1(X) is dense in E. Thus j is a dense embedding
and hence fx is a covering map by Proposition 2.2.

3. Minimal Cloz-covers of non-compact spaces

Definition 3.1. Let X be a space.

(a) A cozero-set C in X is said to be a complemented cozero-set if there is a
cozero-set D in X such that C N D = @} and C U D is dense in X. In case, {C, D}
is called a complementary pair of cozero-sets in X.

(b) G(X) = {clx(C) : C is a complemented cozero-set in X}.

For any space X, G(X) = {A € Z(X)# : A’ € Z(X)#}, where A’ denotes the
complement of A in R(X), that is, A’ = clx(X - A) and G(X) is a subalgebra of
R(X) ([5])-

Recall that a subspace Y of a space X is called C*-embedded in X if for any f €
C*(Y), there is a ¢ € C*(X) with g |y= f.

Definition 3.2. A space X is said to be

(a) a cloz-space if G(X)=B(X), and

(b) a quasi-F space if every dense cozero-set in X is C*-embedded, equivalently,
for any zero-sets Z;, Z in X such that intx(Z;) N intx(Z2) = 0, clx(intx(Z;)) N
Clx(illtx(Zz)) = 0.

Proposition 3.3. (a) A space X is a cloz-space if and only if every element of X
has a cloz open neighborhood.
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(b) Every dense Z*-embedded subspace of a cloz-space is again a cloz-space.

proof. (a) (=) It is trivial.

(<) Let {C, D} be a complemented pair of cozero-sets in X and z € clx(C).
Let V be a cloz open neighborhood of z in X. Since cly((CUD) N V) =clx(C U
D)NV=XnV=YV,{CNnV,Dn V}is acomplemented pair of cozero-sets in
V. Since V is a cloz-space, cly(C N V) is clopen in V. Moreover, clx(C) NV =
cly(C NV) =inty(cly(C N V)) = intx(clx(C)) N V. Hence z € intx(clx((C))).
Thus clx (C) is again clopen in X and therefore X is a cloz-space.

(b) Let Y be a cloz-space and X a dense Z#-embedded subspace of Y. Let {C,
D} be a complemented pair of cozero-sets in X. Since G(X) C Z(X)# and X is
Z#-embedded in Y, there are A, B € Z(Y)# with clx(C) = AN X and clx(D) =
B N X. Note that

0 =clx(C) Aclx(D) = (ANX)A(BNX)
= clx(intx ((A N X) N (B N X))) = clx(intx((A N B) N X))
= clx(inty(ANB) NX) =cly(inty(ANB))NX=(AAB)NX.
Since X is dense in Y, AAB=0. SinceX=XNY=(AUB)NX,Y=AU
B. Hence A’ =B. Thus A € G(Y). Since Y is a cloz-space, A is clopen in Y and
hence clx(C) is clopen in X.

Definition 3.4. Let C be a full subcategory of the category Tych of Tychonoff
spaces and continuous maps and X € Tych. Then
(a) a pair (Y, f) is called a C-cover of X if (Y, f)isacoverof Xand Y € C,
(b) a C-cover (Y, f) is called a minimal C-cover of X if for any C-cover
(Z, g) of X, there is a covering map h : Z — Y with foh = g.

Lemma 3.5. (/6]) Let C be a full subcategory of Tych such that Y € C if and
only if BY € C. Suppose that X € Tych and (E, f) is a minimal C-cover of BX.
If f71(X) € C, then (f~1(X), fx) is a minimal C-cover of X.

Let Cloz (QF, resp.) denote the full subcategory of Tych determined by cloz-
spaces (quasi-F spaces, resp).

It is known that every compact space X has the minimal Cloz-cover (E..(X), zx)
and moreover E..(X) = {(a,z) : a is a G(X)-ultrafilter on X with ¢ € Na} and
zx ((a,x)) = z ([5]). It is a natural question whether every space has a Cloz-cover.
We will give some partial answers for this problem in this section.
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Definition 3.6. A space X is said to be weakly Lindeldf if for any open cover U
of X, there is a countable subfamily V of U such that UV is dense in X and a
space X is called locally weakly Lindeldf if every element of X has a weakly Lindelof
neighborhood.

In [3], the minimal QF-cover (QF(X), ®x) of a compact space X is constructed
as an inverse limit space and in [8], Vermeer constructed the minimal QF-cover
(QF(X), ®x) of arbitrary space X. In [4] ([6], resp), the minimal QF-cover (QF(X),
®x) of a compact (locally weakly Lindeldf, resp.) space X is characterized by QF(X)
= {a : a is a fixed Z(X)#-ultrafilter on X} and ®x(a) = Na. Moreover, ®x is
Z(X)#-irreducible if X is compact ([4]).

For any space X, let (QF(8X), ®3) ((Ecc(8X), 23), resp.) denote the minimal
QF(Cloz, resp.)-cover of SX.

Theorem 3.7. Let X be a space such that @EI(X ) is Z¥-embedded in QF(BX).
Then (zﬂ_l(X ), zgy ) is the minimal Cloz-cover of X, 25 Y(X) is dense in E..(6X)
and zg, is Z*-irreducible.

proof. Clearly, zEl(X) is dense in E(X). Since every quasi-F space is a cloz-
space, there is a covering map g : QF(8X) — E..(8X) with 23 0g = ®3. Since
the following diagram

- 2B

J'zl ﬂl

Ecc(,@X) _Z[j_) ﬂX

is a pullback, there is a unique continuous map ¢° : @EI(X)_—-» zEl(X) such that
zax 0g° = ®g, and go j; = jj o g°, where jj : QEI(X) — QF(BX) is the inclusion
map. Since j;,3 are Z#-embedded and ®g is Z#-irreducible, by Proposition 2.7,
dg, is Z#-irreducible. Let a € ZEI(X). Then there is b € QF(6X) with g(b) = a.
Hence ®3(b) = 25(g(b)) = 2(a) € X andso b € QEI(X). Hence g(b) = ¢°(b) = a.
Thus ¢° is onto. Since zg, 0 g° = &4, is a covering map, by Proposition 2.2, ¢° is
a covering map. Since zg, o g° = ¥, is Z#-irreducible, by Proposition 2.5, zs,
and ¢° are Z#-irreducible. Consider the following commutative diagram:
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851 (x) L '(X)

jll .7'21
QF(BX) —— E..(BX).

By Proposition 2.7, j; is Z#-embedded. So, by Proposition 3.3, zEl(X) is a cloz-
space. Thus, by Lemma 3.5, (zEl(X), gy ) is the minimal Cloz-cover of X.

Recall that a dense weakly Lindelof subspace of a space is Z#-embedded and
that for any covering map f : X — Y such that Y is weakly Lindeldf, X is weakly
Lindel6f ([4]). Using this, we have the following corollary:

Corollary 3.8. For a weakly Lindeldf space X, (zg1 (X), 285 ) is the minimal Cloz-
cover of X and 2, is Z* -irreducible.

For any weakly Lindelof space X, (Ecc(X), zx) denotes the minimal Cloz-cover
of X. _

For any space X, the isomorphism ¢ : R(8X) — R(X) (¥(A) =ANX, A€
R(6X)) induces a lattice isomorphism G(6X) — G(X). Thus (o, z) € ZEI(X) if
and only if ax = {A N X : A € a} is a G(X)-ultrafilter and © € Nax. Therefore
we have the following corollary:

Corollary 3.9. For any weakly Lindeldf space X, Ec.(X) is the space {(a,2) : c
is a G(X)-ultrafilter on X with = € a} which is a subspace of L(G(X)) x X, where
L(G(X)) is the ultrafilter space of G(X).

Definition 3.10. A space X is said to be a basically disconnected space if for any
zero-set Z in X, intx(Z) is closed in X.

Recall that a sublattice A of R(X) is called o-complete if it is closed under
countable joins and meets.

Proposition 3.11. Let X be a weakly Lindeldf space. Then the following are equiv-
alent:

(1) G(X) = Z(X)*,

(2) G(X) = {clx(C) : Cis a cozero-set in X},
(3) G(Eee(X)) = Z(Eec(X))¥,

(4) Eco(X) is basically disconnected,
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(5) Z(X)* is a o-complete Boolean subalgebra of R(X),

Proof. (1) = (2) Clearly, G(X) C {clx(C) : C is a cozero-set in X}. Let C be a
cozero-set in X, then clx(intx (X - C)) € Z(X)# = G(X) and hence clx (X - clx(X
- C)) = clx(C) € G(X).

(2) = (3) Let A € Z(E.(X))#. Since zx is Z#-irreducible, zx(A) € Z(X)#
and hence zx(A)' = zx(A’) € G(X) C Z(X)#. Hence A’ € Z(E.(X))* and so A
€ G(Eee(X)).

(3) = (4) Let Z be a zero-set in E..(X), then by (3), clg_(x)(intg, (x)(Z)) €
G(Ecc(X)). Since E.(X) is a cloz-space, clg,_ (x)(intg,.(x)(Z)) is clopen in E..(X)
and hence intg,_ (x)(Z) is closed. Thus E.(X) is basically disconnected.

(4) = (5) Since zx is Z#-irreducible, zx(Z(E.(X))#) = Z(X)# and since
E..(X) is basically disconnected, Z(E..(X))# is a o-complete Boolean subalgebra
of R(Ec:(X)) and hence Z(X)# is a o-complete Boolean subalgebra of R(X).

(5) = (1) Since Z(X)# is a subalgebra of R(X), G(X) = Z(X)*.
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