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A NOTE ON PASCAL’S MATRIX

GI-SANG CHEON, JIN-S00 KiM AND HAENG-WON YOON

ABSTRACT. We can get the Pascal’s matrix of order n by taking the first n rows of
Pascal’s triangle and filling in with 0’s on the right. In this paper we obtain some
well known combinatorial identities and a factorization of the Stirling matrix from
the Pascal’s matrix.

1. Introduction

The numbers (}) are the so-called binomial coefficients which count the number
of k-combinations of a set of n elements. They have many fascinating properties and
satisfy a number of interesting identities. Moreover, the binomial coefficients are
open displayed in an array known as Pascal’s triangle. Each entry in the triangle,
other than those equal to 1 occurring on the left side and hypotenuse, is obtained
by adding together two entries in the row above: the one directly above and the
one immediately to the left.

We define the Pascal’s matriz P = [p;;] of order n by taking the first n rows
of Pascal’s triangle and filling in with 0’s on the right (cf. Call and Velleman [5]).

That is, .
{ () if i
bij = .
0 otherwise.
Thus we have

. ]
1 1 O
1 2 1

P=11 3 3 1
1 n=1 -+ -+ n—1 1,
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In (3], it is shown that the Pascal’s matrix P can be factorized by following:
PZGnGn_l e G1

where for each k =1,... ,n,

_[IL OT
Gk‘[ 0 ﬂl

where Tj = (t;;] is the lower triangular matrix of order k defined by
1 ifi>j
tij = .
0 otherwise.
Cleary the determinant of P is 1, and the inverse of P is obtained (cf. Brawer
and Pirovino (3]). In fact, P! = [p};] where
gy UG 2
“ 0 otherwise.
Thus P! is the same as P except that the minus signs appear at (i, j)-positions
with ¢ — j =1 (mod 2).
In this paper, we obtain some well known combinatorial identities and a factor-

ization of the Stirling matrix from the Pascal’s matrix.

2. Results

We consider an ordinary chessboard which is divided into (n — 1)? squares in n
rows and n columns. Let ¢;; be the number of paths with the length i + j — 2 from
(1, 1)-position to (z, j)-position. Then it is easy to show that

i+j—2)! itj—2
S = ) .

For each ¢;; (1 <4, j < n)in (2.1), define C,, = [c;;] to be the matrix of order

n. For example,

Ca =11 2 3 ’ C4 =
1 3 6 1 3 6 10
1 4 10 20

In the following theorem, by a combinatorial argument we show that C, can be
expressed by the Pascal’s matrix.
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Theorem 2.1. Let C,, = [c;;| be the matriz of order n with entries in (2.1). Then
C, = PPT.

Proof. We may assume that 7 < j. Then we can write each path from (1, 1)-position
to (i, )-position on the n x n chessboard as a sequence of the form

le, le, x2R’ y2D) Tty "L'kR’ ykD
where R denotes “right”, D denotes “down” and, for some 1 < k < 7,

1+ za+ -+ =7—-1 (21>0; z2,--- ,z > 0), (2.2)
n+ye+o+uw=i-1 (y1,- ,y%-1>0; yx > 0). (2.3)

For a fixed k with 1 < k < j, clearly the number of such sequences is nins where
n; and ng are the number of solutions to (2.2) and (2.3) respectively.

We claim that
(7Y g o (i1
M=\k-1) ¥ MmTko1)

To show n; = (1), we choose k — 1 elements of the numbers 1,2,.--,j — 1.
Then there is a 1-1 correspondence between solutions to (2.2) and (k — 1)-subsets of
{1,2,---,7—1}. Namely, if {z1,z2, - ,zx} is a solution to (2.2), then {z,,z1 +
T, -+ %1 + Ta + --- + Tk_1} is a (k — 1)-subset of {1,2,---,5 — 1}. Also, if
{z1,22,"++ ;2k—1} is a (k — 1)-subset of {1,2,.-- ,j— 1} with0<2z1 <zp < :-- <
2k—1, then

Ty =21, Tz =23 — 21, *** Thel = 2k—1 — 2k—2, T =J — 1 — 251

solves (2.2) also. Thus n; = (,Jc:i)
Similarly, we can show that ny = (,’;_11) Hence, if we note that (’:) =0 forr > n,
then the number ¢;; of paths from (1.1)-position to (%, j)-position is

cij = i (; ~ 11) (i _ 1) = g‘; (; : 11) (i ~ i) = kz::lpikpjk = (PPT);; (24)

k=1

where (PPT);; is the (4, j) entry of the matrix PPT. Therefore C,, = PPT, which
completes the proof. [J

Note that it is known that PPT is the Cholesky factorization of C,, [3].
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In particular, if ¢ = j in (2.4) then we can establish the following identity from

(2.1): NPT
(- ()

More generally, the following Vandermonde Convolution can be derived from

Theorem 2.1.
( )(7"“ ) < n )
pare t t

Proof. . From (2.1) and (2.4), we get

EE)E)-0)

Thus if we take i — 1 =m, j — 1 =n and k — 1 = t then Vandermonde convolution

Corollary 2.2.

WE

follows immediately from (}) = (,,*,) and (,, +1) =0. O

Vandermonde convolution can be extended as following:

ng
n—"n; Ty n—n n
= 2.6
(nla na, "'7nt—1>kgo(k)( k ) <n1) ng, «+°, nt) ( )

— n _ nl!
where n; +ng +---+n; =n and (n1 na, ,’m) = Ainglomgl”

Note that det C, =1 and A~! = (P~1)TP-1,

Next, we consider a famous counting problem which is called Stirling number.
Let S(n, k) denote the Stirling number for integers n and k with 1 < k < n. Then
the number S(n, k) counts the number of partitions of a set X of n elements into &

indistinguishable boxes in which no box is empty.
Ezample. Let X = {a,b,c,d} then we get the partitions for each k =1,2,3,4:
k=1:X;
k=2:[{a}, {b,c,d}], {8}, {a,c,d}], [{c}, {a,b,d}], [{d}, {a,b,c}],
[{a,8}, {c,d}}, [{a,c}, {b,d}], [{a,d}, {b,c}];
k=3:[{a}, {0}, {c,d}], {a}, {c}, {b,d}], {a}, {d}, {b,c}], [{c}, {d}, {a,b}],
({6}, {d}, {a,c}], [{8}, {c}, {a,d}};
k=4:[{a}, {8}, {c}, {d}]
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Thus we have

1 ifk=1
7 ifk=2
SR =\ 6 k=3
1 ifk=4.

It is well known [1] that the Stirling numbers S(n, k) have a Pascal-like recurrence
relation as following:

1 itk=1
Sn,k)y=<1 ifk=n
Sn—-1,k-1)+kS(n—1,k) if2<k<n-1

As we did for the Pascal’s triangle we can obtain a Pascal-like matrix S, of order
n for these Stirling numbers S(n, k).
Define S,, = [si;] to be the matrix of order n where

{ S(i,7) if i>3
Sij = .
0 otherwise.

Thus for ¢ and j with ¢ > j, each entry s;; in the matrix S,, other than initial
values, is obtained by multiplying the entry in the row directly above it by j and
adding the result to the entry immediately to its left in the row directly above it.
We call S, the Stirling matriz of order n. For example,

100 0 10 0 0 O

1100 11 0 0 O

84 = , Ss=|1 3 1 0 0
1 310

17 6 1 1 7 6 1 0

1 15 25 10 1

By a simple computation, we can easily show the following lemma.

Lemma 2.3. Let S, be the Stirling matriz of order n and let P be the Pascal’s
matriz of order n. Then S, = P([1] ® Sn.—1) where & denotes a direct sum.

Corollary 2.4. Let S(n,k) be a Stirling number. Then

n—1

S k) =Y (”; 1) S(rk—1), (k#1). (2.7)

r=1
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Proof.. Let S, = [si;] and P = [p;;]. Then from Lemma 2.3, if k # 1, we get

n—1 n—1
n—1
S(n’k)zsnkzzpnr+13rk-lzz< r )S(T,k—l),
r=1 r=1

which completes the proof. [

For the Pascal’s matrix Pi of order k, 1 < k < n, define

_ [I_x OT
Pl Gl

to be the matrix of order n. Thus P, := P and P, is the identity matrix of order n.

Corollary 2.5. Let S,, be the Stirling matriz of order n. Then S,, can be factorized
by the Py ’s:

Sp=PB, Py - P P,. (2.8)

Proof. If we apply (2.7) recursively we obtain (2.8). O

Remark. Note that

Ezample.
1 0 0 0 O
1 1 0 0 O
Ss=(1 3 1 0 0
1 7 6 1 0
(1 15 25 10 1
't 0 00071 00 0 OT1 OO0OOTL OO0OOO
11 00O0((0O1 0O0O0((0O1O0OTO0{{0O1O0O0TO0
=12 100011 0O0}jj0 01 0O0|0O0T1T0TF0
133 10{01210((0O011OCO0|{00O0T10O0
1 4 6 4 1JL0 1 3 3 1JL0O 01 2 1JL0 0 0 1 1
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St

1 0 0 0 0371 0 0 O O7371 0 O O O 1 0 0 0 O
0100 0|01 O OTO0||0O1 O O0OO0]|-1 1 0 0DO
=(0 01 0 0yJf{0 O 1 O0 OflJ0-1 1 0 O 1-2 1 00
0 o0o010}j0 0-110)J01-210}|-1 3-3 1 0
0 0 0-1 1JLO0O 0 1-2 1JL0-1 3-3 1 1 -4 641
(10000

-1 1 0 0 0

=12 -3 1 0 0

-6 11 -6 1 0

124 -50 35 -10 1
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