J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 6(1999), no 2. 121-127

A NOTE ON PASCAL'S MATRIX

GI-SANG CHEON, JIN-SOO KIM AND HAENG-WON YOON

ABSTRACT. We can get the Pascal's matrix of order n by taking the first n rows of Pascal's triangle and filling in with 0's on the right. In this paper we obtain some well known combinatorial identities and a factorization of the Stirling matrix from the Pascal's matrix.

1. Introduction

The numbers $\binom{n}{k}$ are the so-called binomial coefficients which count the number of k-combinations of a set of n elements. They have many fascinating properties and satisfy a number of interesting identities. Moreover, the binomial coefficients are open displayed in an array known as Pascal's triangle. Each entry in the triangle, other than those equal to 1 occurring on the left side and hypotenuse, is obtained by adding together two entries in the row above: the one directly above and the one immediately to the left.

We define the Pascal's matrix $P = [p_{ij}]$ of order n by taking the first n rows of Pascal's triangle and filling in with 0's on the right (cf. Call and Velleman [5]). That is,

$$p_{ij} = \begin{cases} \binom{i-1}{j-1} & \text{if} \quad i \ge j \\ 0 & \text{otherwise.} \end{cases}$$

Thus we have

$$P = \begin{bmatrix} 1 & & & & & & \\ 1 & 1 & & & & & O \\ 1 & 2 & 1 & & & & \\ 1 & 3 & 3 & 1 & & & \\ \vdots & \vdots & \vdots & \ddots & \ddots & & \\ 1 & n-1 & \cdots & \cdots & n-1 & 1 \end{bmatrix}.$$

Received by the editors June 8, 1999.

¹⁹⁹¹ Mathematics Subject Classification. Primary 05A19, Secondary 05A10.

Key words and phrases. Binomial coefficients, Pascal's matrix. Stirling number, Stirling matrix.

In [3], it is shown that the Pascal's matrix P can be factorized by following:

$$P = G_n G_{n-1} \cdots G_1$$

where for each $k = 1, \ldots, n$,

$$G_k = \begin{bmatrix} I_{n-k} & O^T \\ O & T_k \end{bmatrix}$$

where $T_k = [t_{ij}]$ is the lower triangular matrix of order k defined by

$$t_{ij} = \begin{cases} 1 & \text{if } i \ge j \\ 0 & \text{otherwise.} \end{cases}$$

Cleary the determinant of P is 1, and the inverse of P is obtained (cf. Brawer and Pirovino [3]). In fact, $P^{-1} = [p'_{ij}]$ where

$$p'_{ij} = \begin{cases} (-1)^{i-j} {i-1 \choose j-1} & \text{if } i \ge j \\ 0 & \text{otherwise.} \end{cases}$$

Thus P^{-1} is the same as P except that the minus signs appear at (i, j)-positions with $i - j = 1 \pmod{2}$.

In this paper, we obtain some well known combinatorial identities and a factorization of the Stirling matrix from the Pascal's matrix.

2. Results

We consider an ordinary chessboard which is divided into $(n-1)^2$ squares in n rows and n columns. Let c_{ij} be the number of paths with the length i+j-2 from (1,1)-position to (i,j)-position. Then it is easy to show that

$$c_{ij} = \frac{(i+j-2)!}{(i-1)!(j-1)!} = \binom{i+j-2}{j-1}.$$
 (2.1)

For each c_{ij} $(1 \le i, j \le n)$ in (2.1), define $C_n = [c_{ij}]$ to be the matrix of order n. For example,

$$C_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}, \quad C_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix}.$$

In the following theorem, by a combinatorial argument we show that C_n can be expressed by the Pascal's matrix.

Theorem 2.1. Let $C_n = [c_{ij}]$ be the matrix of order n with entries in (2.1). Then $C_n = PP^T$.

Proof. We may assume that $i \leq j$. Then we can write each path from (1,1)-position to (i,j)-position on the $n \times n$ chessboard as a sequence of the form

$$x_1R$$
, y_1D , x_2R , y_2D , \cdots , x_kR , y_kD

where R denotes "right", D denotes "down" and, for some $1 \le k \le j$,

$$x_1 + x_2 + \dots + x_k = j - 1 \quad (x_1 \ge 0; \ x_2, \dots, x_k > 0),$$
 (2.2)

$$y_1 + y_2 + \dots + y_k = i - 1 \quad (y_1, \dots, y_{k-1} > 0; \ y_k \ge 0).$$
 (2.3)

For a fixed k with $1 \le k \le j$, clearly the number of such sequences is $n_1 n_2$ where n_1 and n_2 are the number of solutions to (2.2) and (2.3) respectively.

We claim that

$$n_1 = \begin{pmatrix} j-1 \\ k-1 \end{pmatrix}$$
 and $n_2 = \begin{pmatrix} i-1 \\ k-1 \end{pmatrix}$.

To show $n_1 = \binom{j-1}{k-1}$, we choose k-1 elements of the numbers $1, 2, \dots, j-1$. Then there is a 1-1 correspondence between solutions to (2.2) and (k-1)-subsets of $\{1, 2, \dots, j-1\}$. Namely, if $\{x_1, x_2, \dots, x_k\}$ is a solution to (2.2), then $\{x_1, x_1 + x_2, \dots, x_1 + x_2 + \dots + x_{k-1}\}$ is a (k-1)-subset of $\{1, 2, \dots, j-1\}$. Also, if $\{z_1, z_2, \dots, z_{k-1}\}$ is a (k-1)-subset of $\{1, 2, \dots, j-1\}$ with $0 \le z_1 < z_2 < \dots < z_{k-1}$, then

$$x_1 = z_1, x_2 = z_2 - z_1, \dots, x_{k-1} = z_{k-1} - z_{k-2}, x_k = j - 1 - z_{k-1}$$

solves (2.2) also. Thus $n_1 = \binom{j-1}{k-1}$.

Similarly, we can show that $n_2 = \binom{i-1}{k-1}$. Hence, if we note that $\binom{n}{r} = 0$ for r > n, then the number c_{ij} of paths from (1.1)-position to (i,j)-position is

$$c_{ij} = \sum_{k=1}^{j} {i-1 \choose k-1} {j-1 \choose k-1} = \sum_{k=1}^{n} {i-1 \choose k-1} {j-1 \choose k-1} = \sum_{k=1}^{n} p_{ik} p_{jk} = (PP^T)_{ij} \quad (2.4)$$

where $(PP^T)_{ij}$ is the (i,j) entry of the matrix PP^T . Therefore $C_n = PP^T$, which completes the proof. \Box

Note that it is known that PP^T is the Cholesky factorization of C_n [3].

In particular, if i = j in (2.4) then we can establish the following identity from (2.1):

$$\sum_{t=0}^{n} \binom{n}{t}^2 = \binom{2n}{n}.\tag{2.5}$$

More generally, the following *Vandermonde Convolution* can be derived from Theorem 2.1.

Corollary 2.2.

$$\sum_{t=0}^{n} \binom{m}{t} \binom{n}{n-t} = \binom{m+n}{n}.$$

Proof. From (2.1) and (2.4), we get

$$\sum_{k=1}^{j} {i-1 \choose k-1} {j-1 \choose k-1} = {i+j-2 \choose j-1}.$$

Thus if we take i-1=m, j-1=n and k-1=t then Vandermonde convolution follows immediately from $\binom{n}{t}=\binom{n}{n-t}$ and $\binom{n}{n+1}=0$. \square

Vandermonde convolution can be extended as following:

$$\binom{n - n_t}{n_1, n_2, \dots, n_{t-1}} \sum_{k=0}^{n_t} \binom{n_t}{k} \binom{n - n_t}{k} = \binom{n}{n_1, n_2, \dots, n_t}$$
 (2.6)

where $n_1 + n_2 + \dots + n_t = n$ and $\binom{n}{n_1, n_2, \dots, n_t} = \frac{n!}{n_1! n_2! \dots n_t!}$. Note that $\det C_n = 1$ and $A^{-1} = (P^{-1})^T P^{-1}$.

Next, we consider a famous counting problem which is called *Stirling number*. Let S(n,k) denote the Stirling number for integers n and k with $1 \le k \le n$. Then the number S(n,k) counts the number of partitions of a set X of n elements into k indistinguishable boxes in which no box is empty.

Example. Let $X = \{a, b, c, d\}$ then we get the partitions for each k = 1, 2, 3, 4:

$$k=1:X;$$

$$k = 2 : [\{a\}, \{b, c, d\}], [\{b\}, \{a, c, d\}], [\{c\}, \{a, b, d\}], [\{d\}, \{a, b, c\}], [\{a, b\}, \{c, d\}], [\{a, c\}, \{b, d\}], [\{a, d\}, \{b, c\}];$$

$$k = 3 : [\{a\}, \{b\}, \{c,d\}], [\{a\}, \{c\}, \{b,d\}], [\{a\}, \{d\}, \{b,c\}], [\{c\}, \{d\}, \{a,b\}], [\{b\}, \{d\}, \{a,c\}], [\{b\}, \{c\}, \{a,d\}];$$

$$k = 4 : [\{a\}, \{b\}, \{c\}, \{d\}].$$

Thus we have

$$S(4,k) = \left\{ egin{array}{ll} 1 & ext{if } k=1 \ 7 & ext{if } k=2 \ 6 & ext{if } k=3 \ 1 & ext{if } k=4. \end{array}
ight.$$

It is well known [1] that the Stirling numbers S(n, k) have a Pascal-like recurrence relation as following:

$$S(n,k) = \begin{cases} 1 & \text{if } k = 1\\ 1 & \text{if } k = n\\ S(n-1,k-1) + kS(n-1,k) & \text{if } 2 \le k \le n-1. \end{cases}$$

As we did for the Pascal's triangle we can obtain a Pascal-like matrix S_n of order n for these Stirling numbers S(n, k).

Define $S_n = [s_{ij}]$ to be the matrix of order n where

$$s_{ij} = \left\{ egin{array}{ll} S(i,j) & ext{if} \ i \geq j \ 0 & ext{otherwise.} \end{array}
ight.$$

Thus for i and j with $i \geq j$, each entry s_{ij} in the matrix S_n , other than initial values, is obtained by multiplying the entry in the row directly above it by j and adding the result to the entry immediately to its left in the row directly above it. We call S_n the *Stirling matrix* of order n. For example,

$$S_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 1 & 7 & 6 & 1 \end{bmatrix}, \quad S_5 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 3 & 1 & 0 & 0 \\ 1 & 7 & 6 & 1 & 0 \\ 1 & 15 & 25 & 10 & 1 \end{bmatrix}.$$

By a simple computation, we can easily show the following lemma.

Lemma 2.3. Let S_n be the Stirling matrix of order n and let P be the Pascal's matrix of order n. Then $S_n = P([1] \oplus S_{n-1})$ where \oplus denotes a direct sum.

Corollary 2.4. Let S(n,k) be a Stirling number. Then

$$S(n,k) = \sum_{r=1}^{n-1} {n-1 \choose r} S(r,k-1), \quad (k \neq 1).$$
 (2.7)

Proof.. Let $S_n = [s_{ij}]$ and $P = [p_{ij}]$. Then from Lemma 2.3, if $k \neq 1$, we get

$$S(n,k) = s_{nk} = \sum_{r=1}^{n-1} p_{n r+1} s_{r k-1} = \sum_{r=1}^{n-1} {n-1 \choose r} S(r,k-1),$$

which completes the proof. \Box

For the Pascal's matrix P_k of order $k, 1 \le k \le n$, define

$$\bar{P}_k = \begin{bmatrix} I_{n-k} & O^T \\ O & P_k \end{bmatrix}$$

to be the matrix of order n. Thus $\bar{P}_n := P$ and \bar{P}_1 is the identity matrix of order n.

Corollary 2.5. Let S_n be the Stirling matrix of order n. Then S_n can be factorized by the \bar{P}_k 's:

$$S_n = \bar{P}_n \; \bar{P}_{n-1} \; \cdots \; \bar{P}_2 \; \bar{P}_1. \tag{2.8}$$

Proof. If we apply (2.7) recursively we obtain (2.8). \square

Remark. Note that

$$S_n^{-1} = \bar{P}_1^{-1} \; \bar{P}_2^{-1} \; \cdots \; \bar{P}_{n-1}^{-1} \; \bar{P}_n^{-1}.$$

Example.

$$S_5 = egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 \ 1 & 3 & 1 & 0 & 0 \ 1 & 7 & 6 & 1 & 0 \ 1 & 15 & 25 & 10 & 1 \end{bmatrix} \ = egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 \ 1 & 2 & 1 & 0 & 0 \ 1 & 3 & 3 & 1 & 0 \ 1 & 4 & 6 & 4 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 2 & 1 & 0 \ 0 & 0 & 1 & 2 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 2 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{split} S_5^{-1} \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & 0 \\ 0 & -1 & 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ -1 & 3 & -3 & 1 & 0 \\ 1 & -4 & 6 & -4 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 2 & -3 & 1 & 0 & 0 & 0 \\ -6 & 11 & -6 & 1 & 0 \\ 24 & -50 & 35 & -10 & 1 \end{bmatrix}. \end{split}$$

REFERENCES

- R. A. Brualdi, Introductory Combinatorics, 2nd Ed., Elsevier Science. Pub. Co., Amsterdam, 1991.
- 2. L. Comtet, Advanced Combinatorics, D. Reidel Pub. Co., 1974.
- 3. R. Brawer and M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl. 174 (1992), 13-23.
- 4. A. T. Benjamin and J. J. Quinn, Paths to a multinomial inequality, preprint.
- 5. G. S. Call and D. J. Velleman, Pascal's matrices, Amer. Math. Monthly 100 (1993), 372-376.
- 6. Z. Zhizheng, The linear algebra of the generalized Pascal matrix, Linear Algebra Appl. 250 (1997), 51-60.

(GI-SANG CHEON) DEPT. OF MATHEMATICS, DAEJIN UNIVERSITY, POCHEON, GYEONGGI-DO 487-711, KOREA.

E-mail address: gscheon@road.daejin.ac.kr

(JIN-SOO KIM) DEPT. OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY, SUWON, GYEONGGIDO 440-746, KOREA.

(HAENG-WON YOON) DEPT. OF MATHEMATICS, DAEJIN UNIVERSITY, POCHEON, GYEONGGIDO 487-711, KOREA.

E-mail address: hwyoon@road.daejin.ac.kr