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SOME GENERALIZATION OF MINTY’S LEMMA

Doo-YounGg JUNG

ABSTRACT. We obtain a generalization of Behera and Panda’s result on nonlinear
scalar case to the vector version.

1. Introduction and preliminaries

In the recent decades, there have been a great deal of developments in the theory
of optimization techniques. The study of variational inequalities and complemen-
tarity problems is also a part of this development because optimization problems
can often be reduced to the solution of variational inequalities and complementarity
problems.

One of the important results of variational inequality theory is Minty’s Lemma,
which has interesting applications in the study of obstacles problems, confined plas-
mas, filtration phenomena, free-boundary problems, plasticity and viscoplasticity
phenomena, elasticity problems, stochastic optimal control problems and others.

Let (-, ) X* x X — R be the duality pairing.

The classical Minty’s Lemma (cf. [2] and [3]) is stated as follows:

Theorem 1.1. Let X be a reflezive real Banach space, K a nonempty closed convez
subset of X and X* be the dual of X. Let T:K — X* be a monotone operator
which is continuous on finite dimensional subspaces (or at least hemicontinuous).
Then the followings are equivalent.

(a) There ezists an zo € K such that

(T(z0),y —20) 20 forall yeK.
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(b) There exists an zq € K such that

(T(y),y - :co) >0 forall yeK.

Recently, Theorem 1.1 was generalized by Behera and Panda [1] to the nonlinear
case.

In this paper, we obtain a generalization of Behera and Panda’s result on non-
linear scalar case to the vector version.

Let X and Y be two topological vector spaces, K a nonempty convex subset of
X, and C be a set-valued mapping from K into 2¥ such that for every z € K, C(z)
is a closed convex solid cone of Y, i.e., its interior is nonempty. Let T be an operator
of X into the space L(X,Y) of all continuous linear operators, andp : K xK — X
be an operator. We define an order relation <¢(;) in Y by the convex cone C(z)
as follows: for y1,92 €Y, y1 <o) y2 © 2 — 1 € C(2).

Definition 1.1. Let T: K — L(X,Y) be an operator. T is said to be n-hemicontin-
uous in the sense of Stampacchia [5] if, for any z, y € K, o € [0, 1], the mapping

a— (T(ay + (1 - a)z),7(y, 7))

is continuous, where {-,-}: L(X,Y) x X = Y is the duality pairing.

Definition 1.2 [3]. An operator G: K — Y is said to be continuous on finite
dimensional subspaces if for every finite dimensional subspace M of X, the operator
G: KN M — Y is weakly continuous.

Definition 1.3 [4). An operator G: X — Y is said to be C(z)-convez if for every
71,22 € X and X € (0,1),

G(Az1 + (1 — Nz2) <c@) AG(z1) + (1 - A)G(z2),

ie., AG(z1) + (1 — A)G(z2) — G(Az1 + (1 = Nz2) € C(z).

2. Main Results

Now we consider the following generalized vector version of Minty’s Lemma.
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Theorem 2.1. Let X and Y be topological vector spaces, K a nonempty convex
subset of X, and {C(z):z € K} a family of closed convez solid cones of Y.
Suppose that T: K — L(X,Y) and n: K x K — X be operators such that

(@) (T(),n(y,y)) ¢ — Int C(z) for all z,y € K,

(ii) the operator
z +— (T(z),1(y, 7))

of K into Y is continuous on finite dimensional subspaces (or at least 7-
hemicontinuous) for each y € K,
(iii) the operator
Yyr— <T(:L'),7](y, :B))

of K into Y is convex for each x € K,
(iv) (T(2),n(y,2)) +(T(v),n(z,y)) ¢ Int C(z) for all z, y € K.
Then the followings are equivalent:

(a) there ezists an o € K such that

(T(x0),n(y, z0)) ¢ — Int C(ao)

forallyec K.
(b) there exists an To € K such that

<T(y),"7($0,y)> ¢ Int C(Q:O)
forallye K.

Proof. Suppose that there exists an zy € K satisfying

<T($0)’ 77(1/, IL'())) ¢ — Int C(x())

for ally € K. Then it is easily shown that for such an zo we have (T(y), 7(zo,y)) ¢
Int C(zg) for all y € K from (iv) by the fact that Int C(z) + Int C(z) = Int C(z).
Conversely, suppose that there exists an zp € K such that

(T(y), n(ze,y)) ¢ Int C(zo)

for all y € K. For arbitrary z € K, letting yy = Az + (1 — A)zo, 0 < A < 1, we have
a ¥y € K by the convexity of K. Hence

(T(y»), n(zo,yr)) ¢ Int C(zo).



36 DOO-YOUNG JUNG
On the other hand, by the convexity of the operator
y — (T (), 1(y, 7)),

we have

MT () (@, yx)) + (1= (T @), (o, y2)) — (T(Wx), 1(yr, ya))

¢ — Int C(xo).
Since
(T(y»),n(zo,y)) ¢ Int C(zo),
we have
(T(yr),n(z,y2)) ¢ — Int C(zo) (2.1)
from (i).

Since the operator
z +— (T(z),1(y, 2))

of K into Y is continuous on finite dimensional subspaces (or at least #-hemicontinu-
ous), taking the limit as A approaches to 0% in (2.1) we get

(T(20),n(y, z0)) ¢ — Int C(z0)

for all y € K by the closedness of Y'\(— Int C(zo)). O

Corollary 2.2 [1]. Let X be a nonempty closed conver subset of a reflexive real
Banach space X and let X* be the dual of X. Let T : K -+ X* and§: K x K -+ X

be two maps such that
(i) (T(y),8(y,y)) =0 for all y € K,
(ii) the map
z — (T(z),6(y, ))
of K into R is continuous on finite dimensional subspaces (or at least hemi-
continuous), for each y € K,
(iii) the map
y — (T(), 0y, ))

of K into R is convex for each z € K,
(iv) (T(2),0(y,2)) + (T(y),0(z,y)) <0 for all z,y € K.
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Then the followings are equivalent:

(a) zo € K, <T(:v0),0(y, :1:0)> >0 forally € K.
(b) zo € K, (T(y),0(z0,y)) <0 for ally € K.

Proof. If we put C(z) = [0,00) in Theorem 2.1, it can be easily shown. O
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