J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math.
6(1999), no. 1, 17-25

A NOTE ON THE INTEGRATION WITH RESPECT
TO FINITELY ADDITIVE SET FUNCTIONS

Bong JIN Kim

ABSTRACT. In this paper, we investigate the properties of the Dunford-Schwartz
integral (the integral with respect to a finitely additive measure). Though it is not
equivalent to the cylinder integral, we can show that a cylinder probability v on (H,C)
can be extend as a finitely additive probability measure © on a field ¢ O C which is
equivalent to the Dunford-Schwartz integral on (H,C, D).

1. Introduction

The theory of integration with respect to finitely additive measures, namely the
Dunford-Schwartz integral, was studied for a long time by several mathematicans
(cf. [1], [2]). Indeed, if we let H be an infinite dimensional real separable Hilbert
space and let P = P(H) be the class of orthogonal projections on H with finite

dimensional range. Then for P € P,

Cp :={P7'B: B is a Borel set in the Range of P}

is a o-field . And the sets in Cp are called cylinder sets with base P.
Let C = UCp. Then C is a field but is not a o-field .

Definition 1.1. A cylinder probability v on H is a finitely additive nonnegative set
function on C with v(H) = 1 such that for all P in P(H), the restriction vp of v to

Cp is countably additive.
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We call the integral with respect to a cylinder probability v on (H,C). as a
cylinder integral for convenience. The cylinder integral with respect to v is the
same as the one defined in Kallianpur and Karadikar (3].

We consider the Dunford-Schwartz integral (the integral with respect to a finitely
additive measure) and investigate the properties of the integral. Though it is not
equivalent to the cylinder integral defined above, we can show that a cylinder prob-
ability v on (H,C) can be extend as a finitely additive probability measure © on
a field ¢ D C which is equivalent to the Dunford-Schwartz integral on (H,C,?).
And throughout this paper, we shall restrict our attention to the finite measures.
Without loss of generality, we can assume that all finitely additive measures are

finitely additive probability measures.

2. Integration with respect to a finitely additive measures

Let X be a nonempty set, S be a field of subsets of X and let p be a finitely

additive probability measure on (X,S).
For any subset A of X, let p*(A) and p.(A) be defined by

w*(A) =inf{u(B): B2 A,B € S}

and

ps(A) = sup{u(C): C C A,C € S}
It is easy to see that u.(A) =1-p*(4°), AC X.

Definition 2.1. A sequence of real-valued functions {fx} on X is converges in
p-probability to a function f, written as fr — f, if for every € > 0,
m

lim p*({z:|fe(z) - f(z)| > €}) = 0.
k—00
Definition 2.2. A function f of the form

f@) = asxa, (@), (2.1)
j=1

where a; ER, A; €S, k> 1, is called a S-simple function.
Let I°(X,S, 1) be the class of all real-valued functions f on X such that there
exists a sequence of S-simple functions {fx} such that f -;) f.
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Theorem 2.3. Let k > 1, fi, fa, -+, fr €1°%(X,S,n) and let g : R* - R be a
continuous function. Then

g(fla Tty fk) € lO(X,Sa/‘L)'

Proof. Let ¢ > 0 and § > 0 be given and let N; € N be such that n; > N; with
n; € N implies

p({z € X |fi@) ~ fin @] > 1) < g, 1<i<h,
where f; », be a S-simple functions. Let M be such that

p{z € X :|fin ()] >M-1}) 1<i< k.

< £
8k’
Then

p*({z € X :|fin,(z)| > M, for some i, 1 <1<k}

k
= w (o € X+ lfi @] > M)

kol

<Y (e € Xt |fin (@) > MY)

k

< Wz € X fun (@) > ()] +1)
+§;u*({w € X :|fi(o) > M -1}
< éu*({m € X :|fun (@) = fila)| > 1})
+éﬂ*({w eX:lfi@|>M-1)<g+g=7 (22)

And let K = {# = (21, ,7x) € R* : |z;] < M, 1< i< k}. Then K is
compact and hence g is uniformly continuous on K.
Thus there exists §; > 0 such that
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"E:(ml:"',xk)ERka ";,:(x,l,"'ax;c)ERk’ lxi—‘m'li|<617 1<Z<k

implies

9(%) — g(a")] < 6.
Thus

{geX:lgo(fu-, f)(@) = g0 (finy s fom) (@) > 8}
CleeX :(fi, - fi)(@) ¢ K}U{z € X : (finy s frmi) (@) ¢ K}

k
U(Jfz € X 1 |(fi - fin)(@)] > 61}). (2.3)
=1
Now, let N2 € N be such that n; > N, implies
pz € X :1fil@) = fon (@) > 61} < o (2.4)

Thus, from (2.2), (2.3) and (2.4), we have, for n; > max(Ny,N), 1 <1<k,
pr{zeX:lgo(fu fid(®@) — g0 (finsy s fini) (@) > 0})
Sp{zeX:(fi,-r, fi)(z) ¢ K})
+u*{z € X : (finese o s frna)(2) € K))

k
+Y w(fz e X |(fi — fin)(@)] > 61)})
i=1
’ k
€ € €
<zttt ; 5F =€
‘Thus g(fla T fk) € lO(X,S,[,L) O

Clearly, 1°(X, S, 1) is a vector space of functions.
For a simple function f : X — R given by (2.1), we define its Dunford-Schwartz

integral with respect to p by
* n
/ f@)dp =" a;u(4;).
Jj=1

Remark 1. If f be a S-simple function, a € R* and |f| < M, then we have [* fdu <

a+Mp({z : |f(z)] > a}). Thus for f € I°(X,S, p), | f| < M, there exists a sequence

{f1} of S-simple functions such that fx — f furthermore {[~ frdp} is a Cauchy
m

sequence of real numbers.
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Definition 2.5. Let f € I°(X,S,u), |f| < M. Let {fi} be any sequence of S
-simple functions such that |fx| < M and fi — f. Then we define f * fdu by
"

/* fdu = kli)lglo /* frdp. (2.6)

Let f € I°(X, S, 1) be positive. Then we define

[ sau= i [ ak)a 27)

and for f such that [*|f|dp < oo,

[ raw= [ tau- [ o (28)

where f*t = fVv0, f~ =—(fA0).
By the above Remark 1, Definition 2.5 is well-defined, that is, the Dunford-

Schwartz integral does not depends on the choice of {fx}.
We now introduce completion of a finitely additive probability space (X, S, u).

Let
S={ACX:p(4)=p.(4)} (2.9)

and let i : § — [0,1] be defined by
A(A) = p*(4), Aed. (2.10)

Then clearly, S C . And we can see that S is a field and that 7 is a finitely

additive measure on (X, S).
Now, for A € § with i(A) = 0 and B C A4,

1= pu(B) + p*(B°) < pue(A) + p7(B%) = p*(B%) < 1

and
1= p"(B) + pa(B°) > p*(B) + ps (A°) = u*(B) + L.

Thus p*(B) = p«(B) = 0. That is, B € S so that (X, S, i) is complete.
(X, S, ) is called the completion of (X, S, ).
We have the followings.
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Lemma 2.6. (2)* = u* and (@), = p..
Proof. For any A C X
()*(A) =inf{@(B): B € §,B D A}
=inf{u*(B): Be §,BD A}
> p*(4)

and

(£)*(A) =inf{E(B): B€ §,B 2 A}
<inf{p*(B): B € 8,B 2 A} = u*(4).

Thus (2)* = p*. Similarly (2). = p.. O
Proposition 2.7. I1%(X,8,5) = I°(X, S, p).

Proof. If f € 1°(X,S, ) and € > 0 be given, then there exists a sequence {fi}
of S-simple functions such that f; — f. Since {fi} also a sequence of S-simple
u

functions and by Lemma 2.6, we have, for fr — f
I

() ({z: |fe(z) = f(@)] > €}) = p*({z : [ fu(2) — f(2)| > €}) = 0

as k — oo. Thus f € 19(X,8, i) and € > 0 be given, then there exists a sequence
{fx} of S-simple funct~ions, say, fr(z) = Z;.L:} k; X Ex,» where Ey, € S, such that
fr 7‘7 f- Then Ey, = Ej, UN;, where N; C N; € N, the set of y null sets.

Let fi(z) = 2;;1 ;X By 0 ;- Then {fi} is a sequence of simple functions and

(8)*({z : | fe(z) — f(2)] > €})
=p ({z: |fe(z) = f(z)] > €})
> p*({z : |fu(2) = £(2)] > €}).

Thus fr — f, that is, f € I°(X,S,u). O
f3

Proposition 2.8. Let (X, S, i) be a complete finitely additive probability space and
let f € 19(X,8, 1), then there exists a countably additive probability measure A on

(R, B(R)) such that
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/gd/\=/*g(f)dﬁ

for all g € Cy(R), where Cy(R) is the set of all bounded continuous functions.

Proof. Since f € I°(X,8, i), given € > 0, we can choose a simple function f, such
that @*({z : |f(z) — fo(z)] > 1}) < e. Thus

pr({z: |f@)] 2 M}) <e

where M = sup,¢ x | fo(z)| + 1.

By Theorem 2.3, g(f) € I°(X, 8, i) for g € Cy(R).

Let T : Cp(R) — R be defined by T(g) = [~ g(f)df- Then T is a positive linear
functional. Now, if gx € Cy(R), gx | 0, then by Daniell’s theorem g, — 0 uniformly
on [—M, M]. Let ko € N such that |gx(z)| < € for k > ko and |z|] < M. Hence

B ({z : |gx(f(z))] > €}) <
since {z : lgr(f(z))] > €} C {z : |f(z)| > M} for k > ko. Therefore gi(f) 7 0

and T(gx) — 0 as £ — oo. Thus by Daniell’s representation theorem (cf. [1]),
there exists a countably additive measure X on (R, B(R)) such that T'(g) = [ gdA
for every g € Cp(R). O

Remark 2. (1) For f € 19(X,8,fi) and n € N, let N} == {a € R: X({a}) > £}.
Then N7} is a finite set for \. Therefore Ny := {a € R: A({a}) > 0} = U, N} is
countable subset of R. Thus for a ¢ Ny, M({a}) =0, and {z € X : f(z) < a} €S
by proposition 2.8. That is, if there exists a countable subset N of R such that for
alla ¢ Ny, f~1(—o0,a] € S (u-completion of S).

(2) If we let X = H be a infinite dimensional separable real Hilbert space, and A
be a self adjoint Hilbert Schmidt operator on H such that the range of A is infinite
dimensional. Then we can see that (although not proved here ) f(h) = ||Ah||? is
cylinder integrable but is not Dunford-Schwartz integrable. That is, the cylinder
integral and the Dunford-Schwartz integral is not equivalent. But we can also
see that a cylinder probability v on (H,C) can be extened as a finitely additive
probability measure © on a field € O C such that for f € I°(H, ¢, 7) such that

ffdﬁ:/fdu
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where [ fdv is the cylinder integral as in [3].

Thus we can carry out several problems that we deal with not only the cylinder
probability v on (H,C) but also the extension © on (H,C) of the finitely additive
measure v on (H,C).

(3) In classical measure theory (cf. [3]), if (X,S, 1) is a measure space and f is
a nonnegative integrable function, then the Lebesgue integral

V(A) = /A fdu, AE€S,

defines a measure v on (X, S) that is absolutely continuous with respect to p in the
sense that, for all A € S,

p(A) =0=v(4) =0.

When v is finite, the absolute continuity can also be defined as, for all {4,} C S,
p(Agy) — 0= v(4,) =0,

or, alternatively, as;
for any € > 0, there exists § > 0 such that v(A) < e whenever A € S and

u(A) < 6.
But if v and u be finitely additive measures, the above definition does not imply
the existence of a Radon-Nikodym derivatives. This can be demonstrated by the

following example.

Ezample. Let X be a countable infinite set and
S={ACX:A or A°isfinite }.

Then S is a field. Now if we define finitely additive measures v and p by

(4) = 0, if A is finite
YAV =91, if A° is finite.
and

n, if A is a finite set with n elements

oo, if A° is finite.

p(4) = {
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Then, clearly v is absolutely continuous with respect to u in the above sense. Now,
if f is a Radon-Nikodym derivative of v with respect to . That is,

V(A)=/A*fd,u, Aes.

Then .
v({z}) = / fdu, zeX.
{z}

Thus f(z) =0 for all € X. But v(X) =1 and [, fdu=0.

Since finitely additive measures do not possess, in general, the property of count-
able additivity, the concept of absolute continuity of countably additive measures
mighty be generalized for finitely additive measures in multiple ways.
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