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VARIATIONAL-TYPE INEQUALITIES FOR SET-VALUED
MAPPINGS ON NORMED LINEAR SPACES

Suk-JIN LEE

ABSTRACT. In this paper, we show that the existence of the solutions to the variation-
al-type inequalities for set-valued mappings on normed linear spaces using Fan’s sec-
tion theorem.

1. Introduction and preliminaries

Variational inequalities introduced by Hartman and Stampacchia [5] have been
extended and generalized in various directions as a powerful tool of current math-
ematical technology. Recently, Behera and Panda [3] introduced variational-type
inequalities for single-valued mappings in Hausdorff topological vector spaces.

In this paper, we extend the existence theorem for variational-type inequalities in
[3] to set-valued case. In the proof of our main theorem, we use Fan’s section theo-
rem [4], which has been applied to variational inequality problems, complementary
problems, game theory, and so on.

First we introduce the following theorem.

Theorem 1.1 (Fan’s Section Theorem). Let K be a nonempty compact convex
subset of a Hausdorff topological vector space X. Let A be a subset of K x K
satisfying the following conditions;

(1) for each z € K, (z,z) € A,

(2) for each fized z € K, the set Ay = {y € K : (x,y) € A} is closed in K, and

(3) for each fized y € K, the set AY = {z € K : (x,y) ¢ A} is convez in K.

Then there exists an zo € K such that K x {z0} C A.
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Definition 1.1 [2]. Let X and Y be two topological vector spaces and T : X — 2Y
be a set-valued mapping. T is said to be upper semicontinuous (briefly, u.s.c.) at
zy € X if for any open neighbourhood N containing T'(xp) there exists a neighbour-
hood M of zo such that T(M) C N. T is said to be us.c. if T is u.s.c. at every
point € X.

Definition 1.2 [6]. Let X and Y be two topological vector spaces and T : X — 2Y
be a set-valued mapping. T is said to be closed at z € X if for each nets {z,}
converging to x and {ya} converging to y such that y, € T(z,) for all o, we have
y € T(z). T is said to be closed if it is closed at every point z € X.

Lemma 1.2 [1]. Let X and Y be two topological vector spaces and T : X — 2Y be
a set-valued mapping. The followings hold.
(1) If K is a compact subset of X, and T is w.s.c. and compact-valued, then
T(K) is compact.
(2) If T is u.s.c. and compact-valued, then T is closed.

Throughout this paper, we denote by (y,x) the duality mapping between ele-
ments y € X* and z € X.

2. Main Results

The following theorem is our main result.
Theorem 2.1. Let K be a nonempty compact convex subset of a normed linear
space X. Assume that T : K — 2% is u.s.c. and compact-valued,  : K x K = X
is a bounded mapping, and n : K x K — R is a mapping satisfying the following
conditions;
(1) for each z € K, there exists t € T(z) such that (t,0(z,z)) + n(z,z) =0,
(2) the mapping
z— (t, 0(z,y)> + n(y,z)
of K into R is convez for all y € K and for all t € T(y),
(3) for each z € K, the mappings y — 6(z,y) and y — 1(y,z) are continuous.
Then there ezists an zo € K and ty € T(zo) such that for any y € K

(o, 8(y, o)) + n(zo,y) 2 0.
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Proof. Let
A:={(z,y) € K x K : there exists t € T(y) such that (t,6(z,y)) + n(y,z) > 0},
then it is easily shown that (z,z) € A. For each fixed z € K,

Az ={y € K : (z,y) € A}
= {y € K : there exists ¢ € T(y) such that (¢,0(z,y)) + n(y,z) > 0}

is closed. Indeed, if we let {yx} be a net in A, such that yx — yo then, since
yx € Ay, there exists t5 € T'(yx) such that (tx,0(z,y2)) + n(yr,z) > 0.

Since T(K) is compact, by (1) of Lemma 1.2, there exists ¢g € T(K) such that
tn — to. Since T is closed by (2) of Lemma 1.2, t, € T(yo). By condition (3), we
have

|(tx,8(z, y2)) + n(yr, z) — ({0, 0(z, %)) + n(vo, 7))
< |(t,8(z, 1)) — (to,8(z,v0))| + |[n(yr, 2) — w0, 2)]
< [{ta = t0,0(z, y2))| + | {to, 8(z, y2) — 0(x,30))| + |m(ya, ) — 1(%0, )]
< [lts = to||[|6Cz, w2)|| + |[to]l]|6(z, 1) — O(z, w0)|| + |n(wnr, ) — (v, 2)]|

— 0 as A — o00.

Consequently, there exists tg € T(yo) such that (to,0(z,y0)) + 7(y0,z) > 0.
Hence yo € A, and A; is closed.
On the other hand, for each fixed y € K,

AV :={z € K : (z,y) ¢ A}
={z € K :for all t € T(y),(t,6(z,y)) + n(y,z) <0}

is convex. In fact, let zy,z5 € AY,a € (0,1) and z = az; + (1 — o)z2, then for all
te T(y),

(t,0(z9)) + n(y,2)
= (t,0(azs + (1 — &)z2,9)) + 0y, 01 + (1 — @)z2)
< a[{t,0(z1,9)) + n(y,z1)] + (1 — ) [{,0(z2,9)) + n(y,22)]
<0,
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hence z € AY. By Theorem 1.1, there exists an o € K such that K x {zo} C A.
This implies that there exists an zo € K such that for all y € K there exists
to € T(zo) such that (g, 6(y, o)) + n(zo,y) > 0.

Remark 2.2. Applying Theorem 2.1 in [3] to normed linear spaces, we obtain a
special case of Theorem 2.1.

In Theorem 2.1, we considered K is a nonempty compact convex subset of a
normed linear space X. But in the following theorem, we don’t assume that K is
compact.

Lemma 2.3 [7]. The convez hull of a finite family of compact, convez subsets of a
Hausdorff topological vector space is compact.
Theorem 2.4. Let K be a nonempty convezr subset of a normed linear space X.
Assume that T : K — 2% is w.s.c. and compact-valued, 8 : K x K — X 1s
a bounded mapping, and n : K x K — R is a mapping satisfying the following
conditions;

(1) for each = € K, there ezists t € T(z) such that (t,0(z,z)) + n(z,z) =0,

(2) the mapping

T —> (t,0(:1:,y)> + n(y,z)
of K into R is convezx for all y € K and for all t € T'(y),
(3) for each = € K, the mappings y — 6(z,y) and y — n(y,z) are continuous,

and
(4) there ezists a nonempty compact convez subset D of K and u € D such that

for all z € K\ D there exists t € T'(z) such that
(t,0(u,z)) + n(z,u) <O0.
Then there exists an ©9 € D and to € T'(x¢) such that for any y € K

(t0,0(y, %0)) + n(zo,y) > 0. (2.1)

Proof. For each z € K, let
B, := {y € D : there exists t € T(y) such that (¢,6(z,y)) + n(y,z) > 0},
then it is easily shown that B, is nonempty. And for each z € K, let

C. := {y € K : there exists ¢t € T(y) such that (t,6(z,y)) + n(y,z) > 0},
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then we can show that C; is closed with the same method in the proof of Theorem
2.1. Since D is closed in X, B, = DN C, is a closed subset of D. It is clear that
(2.1) has a solution if () ¢, D5 # 0. For this, it is sufficient to prove that the family
{B; : ¢ € K} has the finite intersection property. Let z;,z, - ,z, be arbitrary
finite elements of K and let Dy = co(D U {z1,Z2, -+ ,Z,}), where co denotes the
convex hull. Then Dy, is a compact convex subset of K by Lemma 2.3. By Theorem
2.1, there exists an zg € Dy such that for all y € Dj, there exists tg € T(z) such
that

(t0,0(y, z0)) + n(z0,y) > 0. (2.2)
It can be shown that 2o € D. In fact, if 2y ¢ D, then by (4), there exists a u € D
such that for such zo € K \ D there exists t5 € T'(zo)

<t07 0(’“‘, $0)> + "7(1"07 u) < 0)

which is a contradiction to (2,2), when u = y. Thus zo € D. In particular, 29 € C,,
for all z;. In fact, if zo ¢ C,, for some z;, then for all ¢ € T'(xy),

<t,9(:1:,-,:z:0)> + n(zo, ;) < 0. (2.3)
But since z; € Dy, from Theorem 2.1, we can choose w € T'(zp) such that

(w, 0(z;,20)) +1(2o, ;) 2 0,
which contradict (2.3). Hence z € By, for i =1,2,--- ,n. Therefore

[ Bz #9.

=1
Hence the family {B, : £ € K} has the finite intersection property, so there exists
y € D such that for each z € K there exists t € T'(y) such that

(t,0(z,y)) + n(y,z) 2 0.
Consequently, there exists an zo € D such that for all y € K there exists tg € T'(zp)
such that
(to,0(y, z0)) + n(zo,y) > 0.

Remark 2.5. Applying Theorem 2.2 in [5] to normed linear spaces, we obtain a

special case of Theorem 2.4.
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