VARIATIONAL-TYPE INEQUALITIES FOR SET-VALUED MAPPINGS ON NORMED LINEAR SPACES

SUK-JIN LEE

ABSTRACT. In this paper, we show that the existence of the solutions to the variational-type inequalities for set-valued mappings on normed linear spaces using Fan's section theorem.

1. Introduction and preliminaries

Variational inequalities introduced by Hartman and Stampacchia [5] have been extended and generalized in various directions as a powerful tool of current mathematical technology. Recently, Behera and Panda [3] introduced variational-type inequalities for single-valued mappings in Hausdorff topological vector spaces.

In this paper, we extend the existence theorem for variational-type inequalities in [3] to set-valued case. In the proof of our main theorem, we use Fan's section theorem [4], which has been applied to variational inequality problems, complementary problems, game theory, and so on.

First we introduce the following theorem.

Theorem 1.1 (Fan's Section Theorem). Let K be a nonempty compact convex subset of a Hausdorff topological vector space X. Let A be a subset of $K \times K$ satisfying the following conditions;

- (1) for each $x \in K$, $(x, x) \in A$,
- (2) for each fixed $x \in K$, the set $A_x = \{y \in K : (x,y) \in A\}$ is closed in K, and
- (3) for each fixed $y \in K$, the set $A^y = \{x \in K : (x,y) \notin A\}$ is convex in K.

Then there exists an $x_0 \in K$ such that $K \times \{x_0\} \subset A$.

Received by the editors December 30, 1998.

¹⁹⁹¹ Mathematics Subject Classification. 49J40.

Key words and phrases. Fan's section theorem, set-valued mapping, variational-type inequality.

28

Definition 1.1 [2]. Let X and Y be two topological vector spaces and $T: X \to 2^Y$ be a set-valued mapping. T is said to be *upper semicontinuous* (briefly, u.s.c.) at $x_0 \in X$ if for any open neighbourhood N containing $T(x_0)$ there exists a neighbourhood M of x_0 such that $T(M) \subset N$. T is said to be u.s.c. if T is u.s.c. at every point $x \in X$.

SUK-JIN LEE

Definition 1.2 [6]. Let X and Y be two topological vector spaces and $T: X \to 2^Y$ be a set-valued mapping. T is said to be *closed* at $x \in X$ if for each nets $\{x_{\alpha}\}$ converging to x and $\{y_{\alpha}\}$ converging to y such that $y_{\alpha} \in T(x_{\alpha})$ for all α , we have $y \in T(x)$. T is said to be closed if it is closed at every point $x \in X$.

Lemma 1.2 [1]. Let X and Y be two topological vector spaces and $T: X \to 2^Y$ be a set-valued mapping. The followings hold.

- (1) If K is a compact subset of X, and T is u.s.c. and compact-valued, then T(K) is compact.
- (2) If T is u.s.c. and compact-valued, then T is closed.

Throughout this paper, we denote by $\langle y, x \rangle$ the duality mapping between elements $y \in X^*$ and $x \in X$.

2. Main Results

The following theorem is our main result.

Theorem 2.1. Let K be a nonempty compact convex subset of a normed linear space X. Assume that $T: K \to 2^{X^*}$ is u.s.c. and compact-valued, $\theta: K \times K \to X$ is a bounded mapping, and $\eta: K \times K \to \mathbb{R}$ is a mapping satisfying the following conditions;

- (1) for each $x \in K$, there exists $t \in T(x)$ such that $\langle t, \theta(x, x) \rangle + \eta(x, x) = 0$,
- (2) the mapping

$$x \longmapsto \langle t, \theta(x,y) \rangle + \eta(y,x)$$

of K into \mathbb{R} is convex for all $y \in K$ and for all $t \in T(y)$,

(3) for each $x \in K$, the mappings $y \mapsto \theta(x,y)$ and $y \mapsto \eta(y,x)$ are continuous.

Then there exists an $x_0 \in K$ and $t_0 \in T(x_0)$ such that for any $y \in K$

$$\langle t_0, \theta(y, x_0) \rangle + \eta(x_0, y) \geq 0.$$

Proof. Let

 $A:=ig\{(x,y)\in K imes K: ext{there exists } t\in T(y) ext{ such that } ig\langle t, heta(x,y)ig
angle + \eta(y,x)\geq 0ig\},$

then it is easily shown that $(x, x) \in A$. For each fixed $x \in K$,

$$\begin{split} A_x &:= \{y \in K : (x,y) \in A\} \\ &= \big\{y \in K : \text{there exists } t \in T(y) \text{ such that } \big\langle t, \theta(x,y) \big\rangle + \ \eta(y,x) \geq 0\big\} \end{split}$$

is closed. Indeed, if we let $\{y_{\lambda}\}$ be a net in A_x such that $y_{\lambda} \to y_0$ then, since $y_{\lambda} \in A_x$, there exists $t_{\lambda} \in T(y_{\lambda})$ such that $\langle t_{\lambda}, \theta(x, y_{\lambda}) \rangle + \eta(y_{\lambda}, x) \geq 0$.

Since T(K) is compact, by (1) of Lemma 1.2, there exists $t_0 \in T(K)$ such that $t_{\lambda} \to t_0$. Since T is closed by (2) of Lemma 1.2, $t_0 \in T(y_0)$. By condition (3), we have

$$\begin{aligned} \left| \left\langle t_{\lambda}, \theta(x, y_{\lambda}) \right\rangle + \eta(y_{\lambda}, x) - \left(\left\langle t_{0}, \theta(x, y_{0}) \right\rangle + \eta(y_{0}, x) \right) \right| \\ &\leq \left| \left\langle t_{\lambda}, \theta(x, y_{\lambda}) \right\rangle - \left\langle t_{0}, \theta(x, y_{0}) \right\rangle \right| + \left| \eta(y_{\lambda}, x) - \eta(y_{0}, x) \right| \\ &\leq \left| \left\langle t_{\lambda} - t_{0}, \theta(x, y_{\lambda}) \right\rangle \right| + \left| \left\langle t_{0}, \theta(x, y_{\lambda}) - \theta(x, y_{0}) \right\rangle \right| + \left| \eta(y_{\lambda}, x) - \eta(y_{0}, x) \right| \\ &\leq \left\| t_{\lambda} - t_{0} \right\| \left\| \theta(x, y_{\lambda}) \right\| + \left\| t_{0} \right\| \left\| \theta(x, y_{\lambda}) - \theta(x, y_{0}) \right\| + \left| \eta(y_{\lambda}, x) - \eta(y_{0}, x) \right| \\ &\to 0 \text{ as } \lambda \to \infty. \end{aligned}$$

Consequently, there exists $t_0 \in T(y_0)$ such that $\langle t_0, \theta(x, y_0) \rangle + \eta(y_0, x) \geq 0$. Hence $y_0 \in A_x$ and A_x is closed.

On the other hand, for each fixed $y \in K$,

$$\begin{split} A^y &:= \{x \in K : (x,y) \not\in A\} \\ &= \big\{x \in K : \text{for all } t \in T(y), \big\langle t, \theta(x,y) \big\rangle + \ \eta(y,x) < 0\big\} \end{split}$$

is convex. In fact, let $x_1, x_2 \in A^y, \alpha \in (0,1)$ and $z = \alpha x_1 + (1-\alpha)x_2$, then for all $t \in T(y)$,

$$\begin{split} \left\langle t, \theta(z, y) \right\rangle + & \eta(y, z) \\ &= \left\langle t, \theta(\alpha x_1 + (1 - \alpha) x_2, y) \right\rangle + & \eta(y, \alpha x_1 + (1 - \alpha) x_2) \\ &\leq \alpha \left[\left\langle t, \theta(x_1, y) \right\rangle + & \eta(y, x_1) \right] + (1 - \alpha) \left[\left\langle t, \theta(x_2, y) \right\rangle + & \eta(y, x_2) \right] \\ &< 0, \end{split}$$

30 SUK-JIN LEE

hence $z \in A^y$. By Theorem 1.1, there exists an $x_0 \in K$ such that $K \times \{x_0\} \subset A$. This implies that there exists an $x_0 \in K$ such that for all $y \in K$ there exists $t_0 \in T(x_0)$ such that $\langle t_0, \theta(y, x_0) \rangle + \eta(x_0, y) \geq 0$.

Remark 2.2. Applying Theorem 2.1 in [3] to normed linear spaces, we obtain a special case of Theorem 2.1.

In Theorem 2.1, we considered K is a nonempty compact convex subset of a normed linear space X. But in the following theorem, we don't assume that K is compact.

Lemma 2.3 [7]. The convex hull of a finite family of compact, convex subsets of a Hausdorff topological vector space is compact.

Theorem 2.4. Let K be a nonempty convex subset of a normed linear space X. Assume that $T: K \to 2^{X^*}$ is u.s.c. and compact-valued, $\theta: K \times K \to X$ is a bounded mapping, and $\eta: K \times K \to \mathbb{R}$ is a mapping satisfying the following conditions;

- (1) for each $x \in K$, there exists $t \in T(x)$ such that $\langle t, \theta(x, x) \rangle + \eta(x, x) = 0$,
- (2) the mapping

$$x \longmapsto \langle t, \theta(x,y) \rangle + \eta(y,x)$$

of K into \mathbb{R} is convex for all $y \in K$ and for all $t \in T(y)$,

- (3) for each $x \in K$, the mappings $y \mapsto \theta(x,y)$ and $y \mapsto \eta(y,x)$ are continuous, and
- (4) there exists a nonempty compact convex subset D of K and $u \in D$ such that for all $x \in K \setminus D$ there exists $t \in T(x)$ such that

$$\langle t, \theta(u, x) \rangle + \eta(x, u) < 0.$$

Then there exists an $x_0 \in D$ and $t_0 \in T(x_0)$ such that for any $y \in K$

$$\langle t_0, \theta(y, x_0) \rangle + \eta(x_0, y) \ge 0. \tag{2.1}$$

Proof. For each $x \in K$, let

 $B_x := \big\{ y \in D : \text{there exists } t \in T(y) \text{ such that } \big\langle t, \theta(x, y) \big\rangle + \eta(y, x) \ge 0 \big\},$

then it is easily shown that B_x is nonempty. And for each $x \in K$, let

 $C_x := \big\{ y \in K : \text{there exists } t \in T(y) \text{ such that } \big\langle t, \theta(x,y) \big\rangle + \ \eta(y,x) \geq 0 \big\},$

then we can show that C_x is closed with the same method in the proof of Theorem 2.1. Since D is closed in X, $B_x = D \cap C_x$ is a closed subset of D. It is clear that (2.1) has a solution if $\bigcap_{x \in K} D_x \neq \emptyset$. For this, it is sufficient to prove that the family $\{B_x : x \in K\}$ has the finite intersection property. Let x_1, x_2, \dots, x_n be arbitrary finite elements of K and let $D_h = co(D \cup \{x_1, x_2, \dots, x_n\})$, where co denotes the convex hull. Then D_h is a compact convex subset of K by Lemma 2.3. By Theorem 2.1, there exists an $x_0 \in D_h$ such that for all $y \in D_h$ there exists $t_0 \in T(x_0)$ such that

$$\langle t_0, \theta(y, x_0) \rangle + \eta(x_0, y) \ge 0. \tag{2.2}$$

It can be shown that $x_0 \in D$. In fact, if $x_0 \notin D$, then by (4), there exists a $u \in D$ such that for such $x_0 \in K \setminus D$ there exists $t_0 \in T(x_0)$

$$\langle t_0, \theta(u, x_0) \rangle + \eta(x_0, u) < 0,$$

which is a contradiction to (2,2), when u = y. Thus $x_0 \in D$. In particular, $x_0 \in C_{x_i}$ for all x_i . In fact, if $x_0 \notin C_{x_i}$ for some x_i , then for all $t \in T(x_0)$,

$$\langle t, \theta(x_i, x_0) \rangle + \eta(x_0, x_i) < 0. \tag{2.3}$$

But since $x_i \in D_h$, from Theorem 2.1, we can choose $w \in T(x_0)$ such that

$$\langle w, \theta(x_i, x_0) \rangle + \eta(x_0, x_i) \geq 0,$$

which contradict (2.3). Hence $x_0 \in B_{x_i}$ for $i = 1, 2, \dots, n$. Therefore

$$\bigcap_{i=1}^n B_{x_i} \neq \emptyset.$$

Hence the family $\{B_x : x \in K\}$ has the finite intersection property, so there exists $y \in D$ such that for each $x \in K$ there exists $t \in T(y)$ such that

$$\langle t, \theta(x,y) \rangle + \eta(y,x) \ge 0.$$

Consequently, there exists an $x_0 \in D$ such that for all $y \in K$ there exists $t_0 \in T(x_0)$ such that

$$\langle t_0, \theta(y, x_0) \rangle + \eta(x_0, y) \ge 0.$$

Remark 2.5. Applying Theorem 2.2 in [5] to normed linear spaces, we obtain a special case of Theorem 2.4.

Acknowledgment.

The author thanks to the referee for his/her valuable comments.

REFERENCES

- 1. J.-P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
- 2. J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
- 3. A. Behera and G. K. Panda, Generalized variational-type inequality in Hausdorff topological vector spaces, Indian J. Pure Appl. Math. 28(3) (1997), 343-349.
- 4. K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310.
- 5. P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math. 15 (1966), 271-310.
- 6. B. S. Lee, G. M. Lee and D. S. Kim, Generalized vector variational-like inequalities on locally convex Hausdorff topological vector spaces, Indian J. Pure Appl. Math. 28(1) (1997), 33-41.
- 7. H. H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, 1980.

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, KYUNGSUNG UNIVERSITY, DAEYEON-DONG, NAM-GU, PUSAN 608-736, KOREA

E-mail address: sjlee@math2.kyungsung.ac.kr