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ON ¢-BIRKHOFF ORTHOGONALITY AND ¢-NEAR BEST
APPROXIMATION

MEENU SHARMA* AND T. D. NARANG

ABSTRACT. In this paper, the notion of e-Birkhoff orthogonality introduced by
Dragomir [An. Univ. Timigsoara Ser. Stiin{. Mat. 29 (1991), no. 1, 51-58] in
normed linear spaces has been extended to metric linear spaces and a decompo-
sition theorem has been proved. Some results of Kainen, Kurkova and Vogt [J.
Approz. Theory 105 (2000), no. 2, 252-262] proved on e-near best approximation
in normed linear spaces have also been extended to metric linear spaces. It is shown
that if (X,d) is a convex metric linear space which is pseudo strictly convex and
M a boundedly compact closed subset of X such that for each ¢ > 0 there exists a
continuous e-near best approximation ¢ : X — M of X by M then M is a chebyshev
set.

1. INTRODUCTION

The notion of Birkhoff orthogonality (cf. [2]) in normed linear spaces was used to
prove some results on best approximation (see [11]). This notion of orthogonality
was extended to metric linear spaces and some results on best approximation were
proved in Narang [8]. A generalization of Birkhoff orthogonality, called e-Birkhoff
orthogonality was introduced by Dragomir [4] in normed linear spaces and this notion
was used to prove a decomposition theorem (cf. {4, Theorem 3]). We extend this
notion of e-Birkhoff orthogonality and prove the decomposition theorem in metric
linear spaces (see Theorem 1).

It was shown by Kainen-Kurkova-Vogt [6] that the existence of a continuous &-
near best approximation in a strictly convex normed linear spaces X and taking
values in a suitable subset M implies that M has the unique best approximation
property. We extend this result to convex metric linear spaces (see Theorem 2). We
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also extend some other results on e-near best approximation proved in [6] to metric

linear spaces (see Theorem 3 and its corollaries).

2. PRELIMINARIES

To start with, we recall a few definitions. Let A and B be non empty sets. A
mapping f: A — B is called a retraction of A onto B if

(i) B is a subset of A.
(ii) f(z)=z VYze€B.

A non-empty set K of a linear space (X, d) is said to be conver if az+(1—a)y € K
for all z,y € K and « € [0,1].

Let (X, d) be a metric space, M a subset of and Py (z) = {m € M : d(z,m) =
d(z,M)}. An element of Py(z) is called a best approzimation to z in M. If Py(z)
is non empty for each z € X then M is called a proziminal set. If Pp(z) is a
singleton for each xz in X then M is called a Chebyshev set. '

A set G in a metric space (X,d) is said to be boundedly compact (Klee [7]) if
every bounded sequence in G has a subsequence converging to a point of the space
X. Equivalently, if the closure of G N B is compact for each closed ball B in X.

A set G in a metric space (X, d) is said to be approzimately compact (Efimov-
Steckin {5]) if for every z € X and every sequence < g, > in G with

lim d(z,gn) = d(z,G)

n—oo

there exists a subsequence < g, > converging to an element of G.
An approximatively compact set in a metric space is proximinal (Efimov-Steckin
[5]) but a proximinal set need not be approximatively compact (Singer [11, p. 389]).
Given a non-empty subset A of a metric space (X,d) and a positive number &,
e-near best approrimation of A by M is a map ¢ : A — M such that

d(z,¢(z)) < d(z,M)+e¢ forall zin A.

A metric linear space (X,d) over a field K (K = R or C) is said to be pseudo
strictly conver (P.S.C.) if given z # 0,y # 0,d(z + y,0) = d(z,0) + d(y,0) implies
y = tz for some ¢t > 0.

The notion of pseudo strict convexity in a metric linear space is a variant of strict
convexity (see e.g. [1]) and was introduced and discussed by Sastry-Naidu-Kishore
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[9] and [10]. For normed linear spaces, strict convexity and pseudo strict convexity
are equivalent (see e.g. (3, p. 122]).
A metric linear space (X, d) is said to be convez if for all z,y € X, € [0,1]

d(u, Az + (1.— Ay) < Md(u,z) + (1 — N)d(u,y) for all u € X.

Clearly every normed linear space is a convex metric linear space.

For a metric linear space (X, d) over a field K and € € [0, 1], an element z € X
is said to be e-Birkhoff orthogonal over y € X [4] if d(z + ay,0) > (1 — €)d(x,0) for
all o € K and we denote it by zLy(e — B).

If A is a non-empty subset of X then by e-Birkhoff orthogonal complement
Al(e — B), we denote the set of all elements which are e-Birkhoff orthogonal to A,
ie.,

At(e—B)={ye X :y Lz(c — B) for all z € A}.
Since AL(e — B) = {y € X : yLa(e — B) forall z € A}, O € Al(e — B) as
OLlz(e — B) for all z € A(d(O + az,0) > (1 — €)d(0,0) for all z € A).
We claim that AN At (e — B) C {0} for every € € [0, 1].
Let y € AN AL(e — B). Theny € A and y € At (e — B). Now
ye At(e—B)=>y Lz(e— B) forall z € A
=y L z(e — B)
=>dly+ay)>(1—-¢€)d(y,0) forall ackK
= 0> (1-¢)d(y,0) by taking o = —1
= ed(y,0) >0
=y=0
and so AN At(e — B) C {0}.
Now we prove a lemma to be used in the proof of next decomposition theorem.

Lemma 1. Let G be a closed linear subspace of a metric linear space (X,d),G # X.
Then for any € € )0, 1], the e-Birkhoff orthogonal complement of G is non-zero.

Proof. Let Y € X \ G. Since G is closed, d(Y,G) = r > 0. Thus there exists Y. € G
such that
r<d(y,ye) <r/(1-e¢),
ie.,
r 2 d(y,3,0) <r/(1-e).
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Put z. = y — ye, we have z. # 0 and for all y € G and A € K, we obtain
d(ze + Ay1,0) = d(y — ye + Ay1,0)
= d(y, ye — 1)
>T
- 2 (1= g)d(ze, 0),
ie., z. Ly (e— B)andsoz. €Gl(e— B).

The following decomposition theorem was proved in normed linear spaces in [6].

We extended this to metric linear spaces. Q

Theorm 1. Let G be a closed linear subspace of a metric linear space (X,d). Then
for any € €]0,1] We have X = G G1(c - B).

Proof. Suppose G # X andz € X. fz € G, thenz =24+ 0€ G+ G(e - B). If
z ¢ G, then there exists an element y. € G such that
0<r=d(z,G) <d(z,ye) <r/(1—¢)
‘Since ze = = — ¥ € G*+(e — B) (by the above lemma), we have
=y, +z. € G+ Gt(e - B).
Since {0} € G NG+ (e — B) C {0}; we get, X = GEP G*(e — B). 0
The following theorem shows that the continuity of e-near best approximation is

enough to guarantee the uniqueness of best approximation in convex metric linear

spaces which are pseudo strictly convex.

Theorm 2. Let (X,d) be a convex metric linear space which is pseudo strictly convex
and M a boundedly compact closed subset of X. Suppose that for each € > 0, there
exists a continuous €-near best approzimation ¢ : X --+ M of X by M then M is a
Chebyshev set.

Proof. Since a boundedly compact closed set in a metric space is proximinal (see
[11, p. 383]), Pum(z) is non-empty for each x € X. Let m € Pp(z). We choose a
point zg € X with » = d(zo, M) > 0. Given an integer n > 1, let ¢, : X --+ M be

continuous with
d(z, pn(z)) < d(z,M)+1/n forall zin X.
Then ¢, : B(zo,7) --+ M and d(¢n(z),zo) > r for all z in the closed ball B(Xy,r).
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Let m be a mapping defined by
m(z) = zo + r(z — xo)/d(z,x0), =€ X.
We claim that
n={z:d(z,z0) > r} --+ {z : d(z,z0) = r} = 8B(zo,7)

is a radial retraction, i.e.,
(i) d(n(z),z0) =,
(ii) for z € 8B(zo,7), 7(z) = .
Consider
d(n(z),z0) = d(zg + r(z — z9)/d(z — x0), Z0)
= d(r(® ~ 20)/d(z,0),0),

< d—(:z:,r_a:o)d(x — 29,0), by the convexity of (z,d)

= @) )

Thus,
d(m(z),z0) < r (x)
As 7w(z) = =z + [r(z — 20)]/d(z,z0) = rz/d(z,z0) + [(1 — 7)/d(z,z0)]z0, 1ie.,
n(z) € [z, zo] and so
d(z,m(z)) + d(=(x), o) = d(z, zo) (x%)
Now
d(r(z),z) = d(zo + [r(z — z0)]/d(z, o), T)
= d(r(z — zo)/d(z, x0), x — o)
<[1-r/d(z,z0)]d(0,x — zg), by convexity of X
=1 —r/d(z,zo)]d(z, zo)
=d(z,z9) — T
Hence, —d(n(z),z) > r — d(z, 2o)-
So (*x) implies d(m(z),zo) > d(z,zo) + [r — d(z,z0)] =1, i.e.,
d(m(z),z0) > 7 (% * %)

Combining (*) and (x x x), we get d(n(x),zo) = .
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For z € 0B(xo,7), i.e., d(z,zp) = 7. We get
m(z) = zo + r(z — z0)/d(z, zo) = z,i.e.,7(x) = xVz € 0B(z0,T).

Thus 7 : {z : d(z,z0) > r} --+» {z : d(z,20) = r} is a radical retraction and
modn : B(zo,T) --+ 0B(z0,T).
Now ¢n(z) for = in B(zg,r), satisfies

d(¢n(z), o) < (z, M) + 1/n + d(x, 20) (1)
< d(z,z0) + d(zo, M) + 1/n + d(z, zo)
= d(zo, M) + 1/n + 2d(z, xo)
<3JIr+1

Hence ¢, (B(zo,7)) € M N B(xg,3r + 1) and ¢, (B(xp,T)) is a bounded subset of
M. So cl(¢n(B(zg,r))) is compact since M is given to be boundedly compact.
Let P : X --+ X be the reflection through x, i.e.,

P(y) = zo + (z0 — ). ()

Then cl(Pymodn(B(xo,7))) = Porr(cl ¢pn(B(zo,7))) is a compact subset of dB(zg,T)
and Pymo¢y, is a continuous function from B(zg,r) into dB(zg,r).

Since in a convex metric linear space B(zo,7) is convex, by Rothe’s theorem, a
version of Schauder’s theorem (see [12}, p. 27) for each n, Pymo¢p, has a fixed point
zn(say) in B(xg,r) Thus

Tn = Pomodn(zn) = Po(modn(@n)) = 220 — (To¢n(2n)) (using (2))

and so (mo¢n)(zn) = 2x0 — Zn.

We claim that z,, Tg, 279 — Tn = moPn(Zn) and ¢,(zn) are consecutive collinear
points.

Since 2z9 — Tn, = ToPn(zn) implies 2z¢ — zp, — ToPn(zn) = 0, ie., azg + Pz, +
Ymodn(zn) = 0 with a+ B+ =0, ie., zo = (Bzn + 7 - Todn(zn))/B + 7.

Also, by definition of n(z), we have

m(¢n(zn)) = o+ (r(dn(zn) — 20))/d(¢n(2n), o)
T¢n(2n)/d(¢n(zn), z0) + (1 — r/[d($n(z4), zo])Zo
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= 1-7m¢n(Tn) — 7én(Tn)/d(Pn(Tr), z0) — (1 — r/d(Sn(Tn, To))zo = 0
= o mdn(zn) + Bdn(Tn) +7 20 =0

with o+ B+ =1—71/d(¢n(zn), Z0) — 1 +7/d(¢n(zn), z0) =0
= o¢n(Tn) = (Bdn(zn) +7-20)/(B+7)

and so

d(¢n(mn)7 -'En) > d(ﬂod)n(mn)amn)
d(2zg — Tp, Tn)
d

(@n, To) + d(z0, 2T0 — Zn)

(as points xp,zo and 2z¢ — x, are collinear)
= d(zn, Zo) + d(zn, o)
= 2d(zp, x0)

Now we prove that d(zn,zo) = r.

Since mody : B(xo,7) --+ 0B(z0,7) and z, € B(zo,r) implies (modn)(zn) €
O0B(zo,7) and so d(moPn(zn), z0) = 1, ie., d(2zp — Tn,Tn) = 1, ie., d(Tn,z0) = 7.
Hence d(¢n (), ) = 2r. In addition for each m in M,

d(zp,m) > d(zn, Pn(zn)) — 1/n (using (1))
>2r—1/n (3)

Again M is boundedly compact, the sequence {¢n(z)} in M N B(z,3r +1) has
a convergent subsequence with limit u in X. Then the sequence {Pymo@n(zs)} has
a convergent subsequence with limit Pym(u) = zoo € 0B(zg,r). Moreover, for each

min M,

d((zoo — Z0) + (zo — M), 0) = d(To — M, 0)
= d(ZToo, ™M)

> 2or (using (3)) (4)
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If m is in Pp(xg), then d(zo,m) = d(zo, M) = r. Also d(Zwo,Zo) = 7 88 To €
9B(zp,T). So
d((Zoo — x0) + (xg — M), 0) = d(Z0o — To,m — Zp)
< d(zoo — 0,0) + d(m — z0,0)
=r+4r

=2r
implies
d((zeo — z9) + (o — m),0) < 2r (5)
Combining (4) and (5) we have

d((z0o — o) + (0 — m),0) = 2r
=r+r

= d(Zoo — Z0,0) + d(zo — m,0) (6)

Since (X, d) is pseudo strictly Convex, (6) implies o — o = t(zg — m) for same
t>0,ie,m=|(14t)zg— zo)/t implying Prr(zo) = [(1 + t)To — Zo]/t for some
t > 0. Hence M is Chebyshev. a

In strictly convex normed linear spaces this theorem was proved by Kainen-
Kurkova-Vogt [6] and the above proof is an extension of the one given in [6].

Corollary 1. Let (X,d) be a conver metric linear space, M a boundedly compact
subset of X and = an element of X with r = d(zg, M) > 0. Suppose that for
some €, with 0 < € < 2r there exists a continuous e-near best approrimation ¢ :
B(z,r) --+ M of B(z,r) by M. Then there exists a point 1 in 0B(z,r) such that
d(z1,m) > 2r —e.

Proof. The proof is contained in the first part of the proof of Theorem 3 (upto
equation (3)).

If M is an approximatively compact set in a metric space, then Pps(z) is compact
for each z in X. Indeed, any sequence {my} in Fps(z) is a sequence in M with
d(xz,m,) = d(z,M) and by the definition of approximative compactness, has a

convergent subsequence with limit in M and hence in Pps(z). . O

Using this, we have:
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Theorm 3. Let M be an approzimatively compact set in a metric linear space (X, d)
and x an element of X. Suppose that for each € > 0, there is a continuous e-near
best approzimation ¢ : {x} * Pp(z) --+ M of {x} * Py(z) by M. Then Pp(z) is
connected.

For normed linear spaces the proof of Theorem 3 is given in [6] and that proof

can easily be extended to metric linear spaces.

Corollary 2. Let (X,d) be a metric linear space and M an approximately compact
subset of X which is countably proziminal (i.e., Py(x) is non-empty and countable
for each z in X ). Suppose that for each € > 0 there exists a continuous e-near best
approzimation ¢ : X — M of X by M. Then M is a Chebyshev set.

Proof. By Theorem 3, for each z, Py(z) is connected and since the only countable
connected set is a singleton, M is Chebyshev. O

Corollary 3. Let (X,d) be a metric linear space, M a closed, boundedly compact
subset of X, and x an element of X with r = d(z,M) > 0. If for each € > 0, there
exists a continuous e-near best approzimation ¢ : B(x,r) --» M of B(z,r) by M

then Ppr(x) is connected.

Proof. Since a closed, boundedly compact subset is approximatively compact (Singer
[11, p. 383]), the proof follows from Theorem 3. O
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