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A CHARACTERIZATION OF ASYMPTOTIC STABILITY IN
DYNAMICAL POLYSYSTEMS

YooN HoeE Goo

ABSTRACT. We show that a compact subset M of X is asymptotically stable if and
only if a strict Lyapunov function of M exists.

1. Introduction and Preliminaries

The subject of Lyapunov functions constitutes a control theme in the theory of
differential equations or more generally dynamical systems. The basic feature of the
stability theory on Lyapunov functions characterizes stability and asymptotic stabil-
ity of a given set in terms of a nonnegative scalar function defined on a neighborhood
of the given set.

The purpose of this paper is to explore that a compact set M is asymptotically
stable if and only if it has a strict Lyapunov function defined on a neighborhood of
M in dynamical polysystems.

Next we recall some basic concepts and notation from [7]. Throughout this
paper X will be locally compact metric space unless otherwise stated and Rt the
set of nonnegative real numbers. A dynamical system on X is a continuous map in
w: X x R = X with the following properties:

(1) n(z,0) =z for all z € X, and
(2) w(n(z,s),t) =mn(z,s+¢t) forall z € X and s,t € R.

Using a term introduced by Lobry [4], we shall call a family of dynamical systems
{mi|i € I} a dynamical polysystem on X, where I is an arbitrary set of indices.

Let {m;]i € I} be a dynamical polysystem on X. We 2% denotes the set of all
subsets of X. The reachable map of the polysystem {m;|i € I} is the multivalued
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map R : X x Rt — 2X defined by

R(z,t) = {y € X| for some integer n > 1, there exist
t1, -+t € RY and iy,---,4, € I such that
n
> ti=tand y = mi, (miy (- 7oy (12, (2,t1), 82, -, tncs)s )}
i=1
Also, we define R(A,t) = |J,c4 R(z,t) for A C X and t € R* and we define

R(z,R*) by R(z). For A C X, we let R(A) = J,4 R(z). The multivalued map
DR: X x Rt — 2% is defined by

DR(z,t) = {y € X| there exist sequences =, — x, yn = y, tn — £ such that
Yn € R(zn,tn)}.

Given ¢ € X, a subset M of X and § > 0, we denote

d(z, M) = inf{d(z,y)| y € M},
B(M, ) = {z € X| d(z, M) < }.
We say that a compact subset M of X is stable if, for any neighborhood U of

M, there exists a neighborhood V' of M such that R(V) c U; a uniform attractor if
Ay (M) contains a neighborhood of M, where

Ay(M) = {& € X| there exist a neighborhood V of z and t € R such that
R(V,[t,00)) C U for any neighborhood U of M};

an attractor if A(M) contains a neighborhood of M, where

A(M) = {z € X| there exists t € R such that
R(x, [t,00)) C U for any neighborhood U of M};

and asymptotically stable if M is stable and an attractor.
Given any compact subset M of X and positively invariant neighborhood W of
M, a Lyapunov function of M is a continuous function ¢ : W — R™ such that

(1) ¢(z) =0 if and only if z € M, and
(2) for each y € R(z,t),¢(y) < ¢(z).
We conclude this section with the results from Gu and Ryu [2, 3] which are

necessary in the following section.
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Proposition 1.1 (Gu and Ryu [2]). A compact subset M of X is stable if and only

if, for any neighborhood U of M, there is a compact positively invariant neighborhood
V of M such thatV C U.

Proposition 1.2 (Gu and Ryu [2]). Let M be a compact subset of X and suppose
M is stable. Then there is a neighborhood W of M such that a cluster map R is
uniformly bounded on W.

Proposition 1.3 (Gu and Ryu [2]). Let a compact subset M of X be asymptotically
stable. Then M is a uniform attractor. '

Proposition 1.4 (Gu and Ryu [3]). Let a compact subset M of X be stable. Then
there is a neighborhood W of M such that a function l is continuous in W x R¥,
where a function | : X x Rt — R* is defined by I(z,t) = SUPyc R(x,t) d(y, M).

Theorm 1.5 (Gu and Ryu [3]). Suppose that a compact subset M of X is asymp-
totically stable. Let a real valued function ¢ be defined by
l(z,t)
z) = sup ———"—,
)= TR T (e,
Then a function ¢ is a Lyapunov function of M.

2. A strict Lyapunov function

In this section, we shall show that asymptotic stability is characterized in terms
of a strict Lyapunov function.

Definition 2.1. Let M be a compact subset of X and W a positively invariant
neighborhood of M. A strict Lyapunov function of M is a Lyapunov function ¢ of
M defined on W that satisfies the following properties:

(1) ¢(y) < ¢(z) for any y € R(z,t),z ¢ M and t > 0, and

(2) ¢(y) = ¢(2) for y, z € A(z), where A(z) is the limit set of z in X.

Theorm 2.2. Let M be a compact subset of X. Then M is asymptotically stable if
and only if a strict Lyapunov function of M exists.
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Proof. (Necessity) Let M be asymptotically stable. From Propositions 1.1-1.4 and
Theorem 1.5, there is a positively invariant neighborhood W of M such that W C
Ay (M), a cluster map R is uniformly bounded on W, [ is continuous in W x R*
and ¢ : W — RY is Lyapunov function of M.

We define a function f : W x Rt — R* by

ly,t)
f(z,t) = sup ¢(y), where ¢(y) = sup —————.
(@) yeR(z,t) ) ) teIRI-)F 1+1(y,1)

Then this function is well defined on W x R™ and satisfies the properties :

(1) f(z,t) is continuous in W x R™,

(2) f(z,t) =0 for each z € M,t € RY,

(3) f(z,0) >0foreachz e W - M,

(4) f(z,t) < f(z,t + s) for each y € R(z, s),t € R,
(5) f(z,t) < f(z,s) forallt > s,z € W, and

(6) f(z,t) — 0ast— oo.

First, we show that f(z,t) is continuous in W x R*. Assume that f(z,t) is not
continuous at (z,t) € W x R*. Then there is a sequence (zn,t,) € W x R* with
(Tn,tn) — (z,t) such that f(zn,t,) A f(z,t). Since 0 < f(zn,tn) < 1, we have
f(@n,tn) = p, 1 # f(z,t).

Let p < f(z,t). For each y € R(z,t), since R is upper semicontinuous at (z,t),
there is a sequence y, € R(Zn,ts) such that y, — y. Clearly, f(zn,tn) > @(yn)-
Thus we have

K= nll}nolo f(@nstn) 2 nlgxgoqﬁ(yn) = ¢(nl_1_>n;° Yn) = ¢(y).

It follows that u > f(x,t). This contradicts the fact that p < f(z,t). Next, let
p > f(z,t). Choose a with u > a > f(z,t). We may assume that f(zn,tn) > a.
For each integer n, there is a sequence y, € R(zn,t,) such that ¢(yn) > a. Since R
is uniformly bounded on W, there is a neighborhood U of z such that R(U,R*) is
compact.

We may assume that z, € U. Since y, € R(zn,t,) C R(U,R") and R(U,RF) is
compact, we have y, — y. Thus we obtain y € DR(z,t). Since R is a cluster map,
we have y € R(z,t) and so f(z,t) > ¢(y). Since ¢(yn) > a, we have

¢(y) = ¢(lim o) = lim $(yn) > a > f(z,).

This is a contradiction. Hence f is continuous in W x R*.
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In order to prove (2), let £ € M. Then it is clear that ¢(z) = 0. For each
y € R(z,t), since ¢(y) < ¢(z), we have ¢(y) = 0. Thus it follows that f(z,t) = 0.

Next, let z € W — M. Then we have ¢(z) > 0. Since z € R(z,0), we have
f(y,t) > ¢(z) > 0. Therefore, (3) is proved. We will show that f(y,t) < f(z,t+s).
For each y € R(z,s),t € R", we have

f(z,t)= sup @(2) < sup ¢(2)= sup ¢(z) = f(z,s+1).
2ER(y,t) 2€R(R(z,3),t) 2€R(z,s+t)

To show that f(x,t) < f(z,s). Forallt > s,z € W,

f(z,t)= sup ¢(y)= sup é(y)
yER(z:,t) yER(R(xvs),t—s)

For each y € R(R(z,s),t — s), there is z € R(x, s) such that y € R(z,t — s). Thus
we have ¢(y) < ¢(z) < f(z,s) and so f(z,t) < f(z,s). Thus (5) is completed.

Finally, we show (6). For each € > 0, let U = {z € W|¢(z) < €} be a neighbor-
hood of M. Since z € A(M), there is a s € Rt such that R(z,[s,c0)) C U. For any
y € R(z,t), t > s, we have R(z,t) C R(z,[s,00)) CU. Thus y € U and so ¢(y) < €.
We have f(z,t) < €. Since ¢ is arbitrary, we have f(z,t) — 0 as t — oo. Hence (6)
is proved.

We construct a function ¥ : W — Rt by

¥(z) = /0 " et f(a, t)dt.

Then this function ¥ is well defined and is continuous on W. Let z € M. For any
t € R*, we have f(z,t) = 0. Thus ¥(z) = 0. Let £ € W — M. Then f(z,0) > 0. It
follows that ¥(x) > 0. Let y € R(z,s). Then

o0

U(y) = /000 e tf(y,t)dt < /000 et f(z,s +t)dt < / e tf(z,t)dt = ¥(x).

0

Let z € W — M, y € R(z,s) and s > 0. We claim that ¥(y) < ¥(z). Suppose
that ¥(y) = ¥(z). Then, for each t € R*, we have f(z,s +t) = f(z,t). Let t =
ns, n=0,1,---. For each n, we have f(z,0) = f(z,ns). Now, lim,_,o f(z,ns) =0
and so f(z,0) = 0. This contradiction shows that ¥(y) < ¥(z). Let z € W.
Then we have z € A(M). Thus A(z) # 0 C M. For each y € A(z), we have
R(y,R*) C M. For any t € R*, f(y,t) = 0. It follows that ¥(y) = 0.

Hence V¥ is a strict Lyapunov function of M.

(Sufficiency) Let ¢ : W — R™ be a strict Lyapunov function of M. Assume
that there is a neighborhood U of M such that for any neighborhood V of M,
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R(V,R*) ¢ U. We can choose a ¢ > 0 so that B(M,e) C U and B(M,¢) is
compact. For each integer n, we have

R(B(M,~),R") ¢ B(Me).
Thus there is a sequence z, € B(M,£) such that R(z,) ¢ B(M,e). Since R
is ¢ — ¢ map, we have R(z,) NdB(M,c) # 0. We can choose a sequence y, €

R(zn)NOB(M,€). Since 0B(M,¢) is compact, we have y, — y € B(M, ¢). Clearly,
Tn — x € M. Since ¢(yn) < é(zn),
$(y) = ¢(Lim yn) = lim ¢(yn) < lim ¢(z,) = ¢( lim z,) = ¢(z) = 0.

We have ¢(y) = 0 and so y € M. This is a contradiction. Hence, for any neighbor-
hood U of M, there is a neighborhood V of M such that R(V,R*) C U. It follows
that M is stable.

By Proposition 1.1, there is a compact positively invariant U of M such that
U C W. For each z € U, we have R(z,R*) C U. Thus R(z,R+) is compact and so
A(z) # 0. Assume that A(z) ¢ M. Then there is y € A(z) such that y ¢ M. Take
z € R(y,t), t > 0. Then we have z € R(y,t) C R(A(z),t) C A(z). Thus we have
#(z) = ¢(y). This contradicts the fact that ¢(2) < ¢(y). Hence A(z) C M and so
z € A(M). Clearly, U C A(M).

It follows that A(M) is a neighborhood of M and so M is an attracter. Therefore
M is asymptotically stable. Hence the proof of the theorem is complete. a
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