SKEW-ADJOINT INTERPOLATION ON Ax = y IN ALG \mathcal{L}

Young Soo Jo and Joo Ho Kang

ABSTRACT. Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. In this paper the following is proved: Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} . Let x and y be vectors in \mathcal{H} and let P_x be the projection onto sp(x). If $P_xE=EP_x$ for each $E\in\mathcal{L}$, then the following are equivalent.

(1) There exists an operator A in Alg \mathcal{L} such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and $A = -A^*$.

(2)
$$\sup \left\{ \frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} : E \in \mathcal{L} \right\} < \infty, \ y \in sp(x) \text{ and } < x, y >= - < y, x >.$$

1. Introduction

Suppose that we are given a Hilbert space \mathcal{H} and a weakly closed algebra \mathcal{C} of operators acting on \mathcal{H} . An interpolation question for \mathcal{C} asks for which x and y is there a bounded operator $A \in \mathcal{C}$ such that Ax = y. The n-vector interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison [8]. The 'n-vector interpolation problem', asks for an operator A such that $Ax_i = y_i$ for fixed finite collections $\{x_1, x_2, \ldots, x_n\}$ and $\{y_1, y_2, \ldots, y_n\}$. In case \mathcal{U} is a nest algebra, the (one-vector) interpolation problem was solved by Lance [9]: his result was extended by Hopenwasser [4] to the case that \mathcal{U} is a CSL-algebra. Munch [10] obtained conditions for interpolation in case A is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser [5] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser's paper also contains a sufficient condition for interpolation n-vectors. We Jo & Kang [6] obtained conditions for interpolation in the case A is in Alg \mathcal{L} when \mathcal{L} is a CSL.

Received by the editors October 15, 2003 and, in revised form, January 19, 2004. 2000 Mathematics Subject Classification. 47L35.

Key words and phrases. interpolation problem, subspace lattice, skew-adjoint interpolation problem, $Alg\mathcal{L}$.

Again we Jo & Kang [7] showed an interpolation condition to the case that \mathcal{L} is a subspace lattice.

In this article, we investigate skew-adjoint interpolation problems in $Alg\mathcal{L}$: Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} . Given vectors x and y in \mathcal{H} , when does there exist a skew-adjoint operator A in $Alg\mathcal{L}$ such that Ax = y?

We establish some notations and conventions. Let \mathcal{H} be a Hilbert space. A subspace lattice \mathcal{L} is a strongly closed lattice of orthogonal projections on \mathcal{H} . A commutative subspace lattice \mathcal{L} , or CSL \mathcal{L} is a subspace lattice whose elements commute each other. We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} . Then Alg \mathcal{L} denotes the algebra of bounded operators on \mathcal{H} that leave invariant every projection in \mathcal{L} ; Alg \mathcal{L} is a weakly closed subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ of all bounded operators acting on \mathcal{H} . Let x and y be vectors in \mathcal{H} . Then $\langle x,y \rangle$ means the inner product of vectors x and y. Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers. In this paper, we use the convention $\frac{0}{0} = 0$, when necessary.

2. Results

Let \mathcal{H} be a Hilbert space and \mathcal{L} be a subspace lattice of orthogonal projections acting on \mathcal{H} containing 0 and I. Let \mathcal{M} be a subset of a Hilbert space \mathcal{H} . Then $\overline{\mathcal{M}}$ means the closure of \mathcal{M} , \mathcal{M}^{\perp} the orthogonal complement of \mathcal{M} and $[\mathcal{M}]$ the closed subspace of \mathcal{H} generated by \mathcal{M} .

Let x and y be vectors in \mathcal{H} . Let $sp(x) = \{ \alpha x \mid \alpha \in \mathbb{C} \}$ for a vector x of \mathcal{H} .

Lemma 2.1. Let A be an operator in AlgL such that Ax = y and Af = 0 for all f in $sp(x)^{\perp}$. Then the following are equivalent.

- $(1) \ y \in sp(x).$
- (2) For all f in $sp(x)^{\perp}$, A^*f is a vector in $sp(x)^{\perp}$.

Proof. (1) \Rightarrow (2). Let f be a vector in $sp(x)^{\perp}$. Then

$$< A^*f, x > = < f, Ax >$$

= $< f, y > = 0.$

Hence A^*f is a vector in $sp(x)^{\perp}$.

 $(2) \Rightarrow (1)$. Let f be a vector in $sp(x)^{\perp}$. Then

$$< y, f > = < Ax, f >$$

= $< x, A^*f > = 0.$

Hence $y \in sp(x)$.

Lemma 2.2. Let A be an operator in AlgL such that Ax = y and Af = 0 for all f in $sp(x)^{\perp}$. If $A = -A^*$, then A^*f is a vector in $sp(x)^{\perp}$ for all $f \in sp(x)^{\perp}$.

Proof. Let f be a vector in $sp(x)^{\perp}$ and $x = A^*x_1 + x_2$ for some x_2 in $\overline{range\ A^*}^{\perp}$. Then

$$< A^* f, x > = < A^* f, A^* x_1 + x_2 >$$
 $= < A^* f, A^* x_1 > + < A^* f, x_2 >$
 $= < A^* f, A^* x_1 >$
 $= < A f, A x_1 >$
 $= 0.$

So A^*f is a vector in $sp(x)^{\perp}$.

Theorem 2.3. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} . Let x and y be vectors in \mathcal{H} and let P_x be the projection onto sp(x). If $P_xE = EP_x$ for each $E \in \mathcal{L}$, then the following are equivalent.

(1) There exists an operator A in AlgL such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and $A = -A^*$.

(2)
$$\sup \left\{ \frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} : E \in \mathcal{L} \right\} < \infty, \ y \in sp(x) \ and < x, y > = - < y, x > .$$

Proof. (1) \Rightarrow (2). If we assume that (1) holds, then $\sup \left\{ \frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} : E \in \mathcal{L} \right\} < \infty$ by Jo & Kang [7, Theorem 2.4].

Since $A = -A^*$, $y \in sp(x)$ by Lemma 2.1 and 2.2. And

$$< x, y > = < x, Ax >$$

= $< x, -A^*x >$
= $- < y, x >$.

(2) \Rightarrow (1). If $\sup \left\{ \frac{\|E^{\perp}y\|}{\|E^{\perp}x\|} : E \in \mathcal{L} \right\} < \infty$, then there exists an operator A in Alg \mathcal{L} such that Ax = y and Af = 0 for all f in $sp(x)^{\perp}$ by Jo & Kang [7, Theorem

2.4]. Since $\langle x, y \rangle = -\langle y, x \rangle$, $\langle x, Ax \rangle = -\langle Ax, x \rangle$. Let f be a vector in $sp(x)^{\perp}$. Then by Lemma 2.1, A^*f is a vector in $sp(x)^{\perp}$. Let $h = \alpha x + h_1$ be a vector in \mathcal{H} , where $h_1 \in sp(x)^{\perp}$. Then

$$< A^*f, h > = < A^*f, \alpha x + h_1 >$$
 $= < A^*f, \alpha x > + < A^*f, h_1 >$
 $= < f, Ah_1 >$
 $= 0.$

Hence $A^*f = 0$ for all f in $sp(x)^{\perp}$. So $A = -A^*$.

Let $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ be vectors in \mathcal{H} .

Lemma 2.4. Let A be an operator in AlgL such that $Ax_i = y_i (i = 1, 2, ..., n)$ and Ag = 0 for all g in $sp(x_1, ..., x_n)^{\perp}$. Then the following are equivalent.

- (1) $y_k \in sp(x_1, ..., x_n)$ for all k = 1, 2, ..., n.
- (2) If f is a vector in $sp(x_1, \ldots, x_n)^{\perp}$, A^*f is a vector in $sp(x_1, \ldots, x_n)^{\perp}$.

Proof. (1) \Rightarrow (2). Let f be a vector in $sp(x_1,\ldots,x_n)^{\perp}$. Then for all $k=1,2,\ldots,n$,

$$< A^* f, x_k > = < f, Ax_k >$$

= $< f, y_k > = 0.$

So A^*f is a vector in $sp(x_1,\ldots,x_n)^{\perp}$.

 $(2) \Rightarrow (1)$. Let f be a vector in $sp(x_1, \ldots, x_n)^{\perp}$. Then for all $k = 1, 2, \ldots, n$,

$$0 = < A^*f, x_k > = < f, Ax_k >$$

= < f, y_k > .

Hence $y_k \in sp(x_1, \ldots, x_n)$ for all $k = 1, 2, \ldots, n$.

Lemma 2.5. Let A be an operator in AlgL such that $Ax_i = y_i (i = 1, 2, ..., n)$, Ag = 0 for all g in $sp(x_1, ..., x_n)^{\perp}$ and $A = -A^*$. Then A^*f is a vector in $sp(x_1, ..., x_n)^{\perp}$ for all f in $sp(x_1, ..., x_n)^{\perp}$.

Proof. Let f be a vector in $sp(x_1, \ldots, x_n)^{\perp}$ and $x_k = A^*x_{k,1} + x_{k,2}(k = 1, 2, \ldots, n)$ for some $x_{k,2} \in \overline{range} A^*^{\perp}$. Then for all $k = 1, 2, \ldots, n$,

$$< A^*f, x_k > = < A^*f, A^*x_{k,1} + x_{k,2} >$$
 $= < A^*f, A^*x_{k,1} > + < A^*f, x_{k,2} >$
 $= < A^*f, A^*x_{k,1} >$
 $= < Af, Ax_{k,1} >$
 $= 0.$

So A^*f is a vector in $sp(x_1,\ldots,x_n)^{\perp}$.

Theorem 2.6. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and $x_1, \ldots, x_n, y_1, \ldots, y_n$ be vectors in \mathcal{H} . Let

$$\mathcal{M} = \left\{ \sum_{i=1}^{n} \alpha_i x_i : \alpha_i \in \mathbb{C} \right\}$$

and $P_{\mathcal{M}}$ be the projection onto \mathcal{M} . If $P_{\mathcal{M}}E = EP_{\mathcal{M}}$ for each $E \in \mathcal{L}$, then the following are equivalent.

(1) There is an operator A in AlgL such that $y_i = Ax_i (i = 1, 2, ..., n)$, Ag = 0 for all g in $sp(x_1, ..., x_n)^{\perp}$ and $A = -A^*$.

(2)

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E^{\perp} y_i\|}{\|\sum_{i=1}^{n} \alpha_i E^{\perp} x_i\|} : \alpha_i \in \mathbb{C} \text{ and } E \in \mathcal{L} \right\} < \infty,$$

$$y_k \in sp(x_1, \dots, x_n) \text{ and } \langle x_p, y_q \rangle = -\langle y_p, x_q \rangle$$

for all k, p, q = 1, 2, ..., n.

Proof. (1) \Rightarrow (2). If we assume that (1) holds, then

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E^{\perp} y_i\|}{\|\sum_{i=1}^{n} \alpha_i E^{\perp} x_i\|} : \alpha_i \in \mathbb{C} \text{ and } E \in \mathcal{L} \right\} < \infty$$

by Jo & Kang [7, Theorem 2.5].

Let f be a vector in $sp(x_1, \ldots, x_n)^{\perp}$. Since $A = -A^*$,

$$< y_k, f > = < Ax_k, f >$$
 $= < -A^*x_k, f >$
 $= - < x_k, Af >$
 $= - < x_k, 0 >= 0 \text{ for } k = 1, 2, ..., n$

So
$$y_k \in sp(x_1,\ldots,x_n)$$
 for all $k=1,2,\ldots,n$. And
$$< x_p,y_q>=< x_p,Ax_q>$$

$$=< x_p,-A^*x_q>$$

$$=-< y_p,x_q> \ \text{ for } p,q=1,2,\ldots,n.$$

$$(2) \Rightarrow (1)$$
. If

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E^{\perp} y_i\|}{\|\sum_{i=1}^{n} \alpha_i E^{\perp} x_i\|} : \alpha_i \in \mathbb{C} \text{ and } E \in \mathcal{L} \right\} < \infty,$$

then there exists an operator A in $Alg\mathcal{L}$ such that $Ax_i = y_i (i = 1, 2, ..., n)$ and Af = 0 for all f in $sp(x_1, ..., x_n)^{\perp}$ by Jo & Kang [7, Theorem 2.5]. Since $\langle x_p, y_q \rangle = -\langle y_p, x_q \rangle, \langle x_p, Ax_q \rangle = -\langle Ax_p, x_q \rangle$. Let f be a vector in $sp(x_1, ..., x_n)^{\perp}$. Then by Lemma 2.4, A^*f is a vector in $sp(x_1, ..., x_n)^{\perp}$. Let $h = \sum_{i=1}^n \alpha_i x_i + h_1$ be a vector in \mathcal{H} , where $h_1 \in sp(x_1, ..., x_n)^{\perp}$. Since $y_k \in sp(x_1, ..., x_n)$ for all k = 1, 2, ..., n,

$$< A^*f, h > = < A^*f, \sum_{i=1}^n \alpha_1 x_i + h_1 >$$
 $= < f, A(\sum_{i=1}^n \alpha_i x_i) > + < f, Ah_1 >$
 $= < f, \sum_{i=1}^n \alpha_i y_i >$
 $= 0.$

Hence $A^*f = 0$ for all f in $sp(x_1, \ldots, x_n)^{\perp}$. So $A = -A^*$.

Let $\{x_n\}$ and $\{y_n\}$ be two infinite sequences of vectors in \mathcal{H} . With the similar proof as Lemma 2.4 and 2.5, we can get the following lemmas.

Lemma 2.7. Let A be an operator in AlgL such that $Ax_i = y_i (i = 1, 2, ...)$ and Ag = 0 for all g in $[x_1, ..., x_n, ...]^{\perp}$. Then the following are equivalent.

- (1) $y_k \in [x_1, \ldots, x_n, \ldots]$ for all $k = 1, 2, \ldots$
- (2) If f is a vector in $[x_1, \ldots, x_n, \ldots]^{\perp}$, A^*f is a vector in $[x_1, \ldots, x_n, \ldots]^{\perp}$.

Lemma 2.8. Let A be an operator in AlgL such that $Ax_i = y_i (i = 1, 2, ...)$, Ag = 0 for all g in $[x_1, ..., x_n, ...]^{\perp}$ and $A = -A^*$. Then A^*f is a vector in $[x_1, ..., x_n, ...]^{\perp}$ for all f in $[x_1, ..., x_n, ...]^{\perp}$.

With the similar proof as Theorem 2.6, we can get the following theorem.

Theorem 2.9. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and $\{x_n\}$ and $\{y_n\}$ be two infinite sequences of vectors in \mathcal{H} . Let

$$\mathcal{M} = \left\{ \sum_{i=1}^{n} \alpha_i x_i : \alpha_i \in \mathbb{C}, n \in \mathbb{N} \right\}$$

and $P_{\overline{\mathcal{M}}}$ be the projection onto $\overline{\mathcal{M}}$. If $P_{\overline{\mathcal{M}}}E = EP_{\overline{\mathcal{M}}}$ for each $E \in \mathcal{L}$, then the following are equivalent.

(1) There is an operator A in AlgL such that $y_i = Ax_i (i = 1, 2, ...)$, Ag = 0 for all g in $[x_1, ..., x_n, ...]^{\perp}$ and $A = -A^*$.

(2)

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E^{\perp} y_i\|}{\|\sum_{i=1}^{n} \alpha_i E^{\perp} x_i\|} : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E \in \mathcal{L} \right\} < \infty,$$

$$y_k \in [x_1, \dots, x_n, \dots] \text{ and } \langle x_p, y_q \rangle = -\langle y_p, x_q \rangle$$

for all k, p, q = 1, 2, ...

REFERENCES

- 1. W. B. Arveson: Interpolation problems in nest algebras. J. Functional Analysis 20 (1975), no. 3, 208-233. MR 52#3979
- 2. R. G. Douglas: On majorization, factorization, and range inclusion of operators on Hilbert space. *Proc. Amer. Math. Soc.* 17 (1966), 413-415. MR 34#3315
- F. Gilfeather & D. Larson: Commutants modulo the compact operators of certain CSL algebras. In: Constantin Apostol, Ronald G. Douglas, Bela Szokefalvi-Nagy [Bela Sz.-Nagy], Dan Voiculescu & Grigore Arsene (Eds.), Topics in modern operator theory (Timişoara/Herculane, 1980), (pp. 105-120). Operator Theory: Adv. Appl., 2, Birkhauser, Basel-Boston, Mass., 1981. MR 84b:47052
- 4. A. Hopenwasser: The equation Tx = y in a reflexive operator algebra. *Indiana Univ. Math. J.* **29** (1980), no. 1, 121-126. MR **81c**:47014
- Hilbert-Schmidt interpolation in CSL-algebras. Illinois J. Math. 33 (1989), no. 4, 657-672. MR 90m:47057
- Y. S. Jo & J. H. Kang: Interpolation problems in CSL-Algebra Alg L. Rocky Mountain Journal of Math. 43 (2003),
- 7. _____: The equation Ax = y in Alg \mathcal{L} . To appear.
- R. Kadison: Irreducible operator algebras. Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273-276. MR 19,47e
- E. C. Lance: Some properties of nest algebras. Proc. London Math. Soc. (3), 19 (1969), 45-68. MR 39#3325

- 10. N. Munch: Compact causal data interpolation. *J. Math. Anal. Appl.* **140** (1989), no. 2, 407–418. MR **90c:**47029
- (Y. S. Jo) DEPARTMENT OF MATHEMATICS, KEIMYUNG UNIVERSITY, 1000 SINDANG-DONG, DALSEOGU, DAEGU 704-701, KOREA *Email address*: ysjo**@kmu.ac.kr**
- (J. H. KANG) DEPARTMENT OF MATHEMATICS, DAEGU UNIVERSITY, 15 NAERI-RI, JILLYANG-EUB, GYEONGSAN-SI, GYEONGBUK 712-714, KOREA *Email address*: jhkang@taegu.ac.kr