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SKEW-ADJOINT INTERPOLATION ON Az =y IN ALGL

YOUNG S00 Jo AND Joo Ho KANG

ABSTRACT. Given vectors z and y in a Hilbert space, an interpolating operator is
a bounded operator T such that Tz = y. In this paper the following is proved: Let
L be a subspace lattice on a Hilbert space H. Let = and y be vectors in H and let
P, be the projection onto sp(z). If P,E = EP; for each E € £, then the following
are equivalent.
(1) There exists an operator A in Algl such that Az = y, Af = 0 for all f in
sp(x)* and A = —A*.

1Byl -
(2) sup ELq] :EeLy<oo,y€sp(z)and < z,y >=— < y,z >.

1. INTRODUCTION

Suppose that we are given a Hilbert space H and a weakly closed algebra C of
operators acting on H. An interpolation question for C asks for which z and y is
there a bounded operator A € C such that Az = y. The n-vector interpolation
problem was considered for a C*-algebra U by Kadison [8]. The ‘n-vector interpola-
tion problem’, asks for an operator A such that Az; = y; for fixed finite collections
{z1,%2,...,2n} and {y1,y2,...,¥n}. In case U is a nest algebra, the (one-vector)
interpolation problem was solved by Lance [9]: his result was extended by Hopen-
wasser [4] to the case that ¢/ is a CSL-algebra. Munch [10] obtained conditions for
interpolation in case A is required to lie in the ideal of Hilbert-Schmidt operators
in a nest algebra. Hopenwasser [5] once again extended the interpolation condition
to the ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser’s paper
also contains a sufficient condition for interpolation n-vectors. We Jo & Kang [6]
obtained conditions for interpolation in the case A is in Alg{ when £ is a CSL.
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Again we Jo & Kang [7] showed an interpolation condition to the case that £ is a
subspace lattice.

In this article, we investigate skew-adjoint interpolation problems in Algl: Let
L be a subspace lattice on a Hilbert space H. Given vectors z and y in H, when
does there exist a skew-adjoint operator A in AlgC such that Az = y?

We establish some notations and conventions. Let H be a Hilbert space. A
subspace lattice L is a strongly closed lattice of orthogonal projections on H. A
commutative subspace lattice £, or CSL L is a subspace lattice whose elements
commute each other. We assume that the projections 0 and I lie in £. We usually
identify projections and their ranges, so that it makes sense to speak of an operator
as leaving a projection invariant. Let £ be a subspace lattice on a Hilbert space
‘H. Then AlgL denotes the algebra of bounded operators on H that leave invariant
every projection in £; AlgL is a weakly closed subalgebra of the algebra B(#) of all
bounded operators acting on H. Let = and y be vectors in H. Then < z,y > means
the inner product of vectors z and y. Let N be the set of all natural numbers and
let C be the set of all complex numbers. In this paper, we use the convention % =0,

when necessary.

2. RESULTS

Let H be a Hilbert space and £ be a subspace lattice of orthogonal projections
acting on H containing 0 and I. Let M be a subset of a Hilbert space H. Then M
means the closure of M, M+ the orthogonal complement of M and [M] the closed
subspace of H generated by M.

Let = and y be vectors in H. Let sp(z) = { ez | a € C } for a vector z of H.

Lemma 2.1. Let A be an operator in AlgL such that Ax =y and Af =0 for all f
in sp(z)*

(1) y € sp(x).
(2) For all f in sp(z)*, A*f is a vector in sp(z)™.

. Then the following are equivalent.

Proof. (1) = (2). Let f be a vector in sp(z)’. Then
< A*f,x > =< f,Az >
=< f,y >=0.

Hence A*f is a vector in sp(z)*.
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(2) = (1). Let f be a vector in sp(z)*. Then
<y, f>=<Az,f>
=<z, A*f >=0.
Hence y € sp(z). O

Lemma 2.2. Let A be an operator in AlgL such that Az =y and Af =0 for all f
in sp(z)t. If A= —A*, then A*f is a vector in sp(z)* for all f € sp(z)*.

Proof. Let f be a vector in sp(z)* and & = A*z; + x» for some 3 in range A*.
Then
<A fix> =< A*f,A'x1 + 22 >
=< A" f, A%y >+ < A*f,z2 >
=< A*f,A'z1 >
=< Af, Az; >
=0.

So A*f is a vector in sp(z)*. O

Theorem 2.3. Let L be a subspace lattice on a Hilbert space H. Let © and y be
vectors in H and let P, be the projection onto sp(z). If P,E = EP, for each E € L,
then the following are equivalent.

(1) There exists an operator A in AlgL such that Az =y, Af =0 for all f in sp(z)*

and A = —A*.
(2) su “Ely”~Ee£ < € sp(z) and < 2,y >= — < y,T >
p “E'LII)” . o0, y pm a ’y - y’x .

Proof. (1) = (2). If we assume that (1) holds, then sup{

Jo & Kang {7, Theorem 2.4).
Since A = —A*, y € sp(z) by Lemma 2.1 and 2.2. And

ELy| }
Feli<oob
IEL| y

<z,y>=<zAz >
=<z, -A'z >
=—-<yT>.

EL
(2) = (1). If sup { ”ELZH :E e C} < 00, then there exists an operator A in

Algl such that Az = y and Af = 0 for all f in sp(z)* by Jo & Kang [7, Theorem
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2.4]. Since < z,y >= —~ < y,z >, < z,Ax >= — < Az,z >. Let f be a vector
in sp(z)*. Then by Lemma 2.1, A*f is a vector in sp(z)*. Let h = az + hy be a
vector in H, where h; € sp(z)*. Then

<A*f,h>=<A'f,ax + h; >
=< A"f,ar >+ < A*f,h1 >

=< f,Ah1 >
=0.
Hence A*f = 0 for all f in sp(z)t. So A = —A*. O
Let 1,Z2,...,%n,Y1,Y2, - - - , Yn b€ vectors in H.

Lemma 2.4. Let A be an operator in AlgL such that Az; = y;(i = 1,2,...,n) and
Ag =0 for all g in sp(zy,. .. ,Zn)L. Then the following are equivalent.

(1) yk € sp(z1,...,2n) forallk =1,2,...,n.
(2) If £ is a vector in sp(x1,...,Zn)*, A*f is a vector in sp(z1, ... LT ).
Proof. (1) = (2). Let f be a vector in sp(z1,...,2n)". Then for all k =1,2,...,n,

< A*f,xp > =< f, Az >
=< f)yk >=0.

So A*f is a vector in sp(zy,...,Z,)" .
(2) = (1). Let f be a vector in sp(z1,...,Z,)L. Then forall k =1,2,...,n,

0=< A*f,z > =< f, Azy, >
=< f’yk > .

Hence yi € sp(z1,...,2n) forallk=1,2,...,n. |

Lemma 2.5. Let A be an operator in AlgL such that Az; = yi(i =1,2,...,n), Ag=
0 for all g in sp(z1,...,Zn)t and A = —A*. Then A*f is a vector in sp(z, . . . ,Tn)t

for all f in sp(z1,...,Tn)t.
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Proof. Let f be a vector in sp(z1,...,z,)" and 2 = A*zp 1 + z2(k=1,2,...,n)
for some x5 € WJ'. Then for all k=1,2,...,n,
< A*fixp > =< A*f, A*zp1 + T2 >
=< A f,A%zp1 >+ < A'f,zp0 >
=< A*f, A%zp1 >
=< Af, Az >
=0.

So A*f is a vector in sp(z1,...,Zs)". 0

Theorem 2.6. Let L be a subspace lattice on a Hilbert space H and x1,...,Tn,Y1,---,Yn

M= {iai:ci : aiE(C}
=1

and Ppq be the projection onto M. If PyE = EPp for each E € L, then the

following are equivalent.

(1) There is an operator A in AlgL such that y; = Azi(i =1,2,...,n), Ag =0 for
all g in sp(xy, .. .,:rn)l and A = —A*.

(2)

I3y Bl }
su = ro; ECand Fe L) <o
p{ I, eB el ™ !

be vectors in H. Let

Yk € sp(x1,...,%n) and < Tp,Yq >= — < Yp, Tq >

forallk,p,q=1,2,...,n.

Proof. (1) = (2). If we assume that (1) holds, then

|5 Byl
sup = ca; €Cand F€ L) <00
{ | o5 Bt a|

by Jo & Kang [7, Theorem 2.5].
Let f be a vector in sp(z1,...,2,)*. Since A = —A*,
<Yk, f > =< Az, f >
=< —A*zy, f >
=— <z, Af >
=—-<zr0>=0 for k=1,2,...,n
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So yx € sp(x1,...,2,) forall k =1,2,...,n. And
< Tp,Yqg > =< Tp, ATq >
=—<Ypxg> for pg=12,...,n.
(2)= Q). If
I35y ci Byl }
su = ta; €ECand Ee L) <oo,
? { I, B e
then there exists an operator A in AlgC such that Az; = y;(1 =1,2,...,n) and Af =
0 for all f in sp(z1,...,%s)* by Jo & Kang [7, Theorem 2.5]. Since < zp,yq >=
— < Yp,Tg >, < Tp, Azg >= — < Azp,z4 >. Let f be a vector in sp(:z:l,...,a:n)‘L.
Then by Lemma 2.4, A*f is a vector in sp(z1,...,2Z,)%. Let h = 0 oz + hy
be a vector in H, where hy € sp(zy,...,zn)". Since y; € sp(z1,...,2,) for all
k=12,...,n,

<A fh>=<Af,Y onzi+hi >

i=1

n
=< £, AQY_eizi) > + < f, Ahy >
i=1

n
=< fa Zaiyi >
i=1

=0.

Hence A*f =0 for all f in sp(z1,...,Z,) . So A = —A*.
Let {z,} and {y,} be two infinite sequences of vectors in H. With the similar
proof as Lemma 2.4 and 2.5, we can get the following lemmas. O

Lemma 2.7. Let A be an operator in AlgL such that Az; = y;(i = 1,2,...) and

Ag =0 for all g in [z1,...,%n,...]-. Then the following are equivalent.
(1) yx € [z1,..-12Zn,.. ] forallk=1,2,....
(2) If f is a vector in [a;l,...,:z:n,...]l, A*f is a vector in [z1,...,%n,.. ] .

Lemma 2.8. Let A be an operator in AlgL such that Az; = yi(i = 1,2,...), Ag=0
forallgin|zy,...,Zn,...)" and A = —A*. Then A*f is a vector in [z1,...,Zn,...]"

for all f in [z1,...,Zq,.. ] .

With the similar proof as Theorem 2.6, we can get the following theorem.
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Theorem 2.9. Let L be a subspace lattice on a Hilbert space H and {z,} and {y,}
be two infinite sequences of vectors in ‘H. Let

M={Zaimi ca; €C,neN }
=1

and Py be the projection onto M. If PE = EPg; for each E € L, then the

following are equivalent.

(1) There is an operator A in AlgL such that y; = Az;(i =1,2,...), Ag =0 for all
g in [3101,...,25",...]l and A = —A*.

(2)

I3 or, Byl
- : . E
Sup{“zzlzlaiE.in“ neENaeCand E€ L} <oo,

Yk € [T1,.- 1 Tn,y...] and < Tp,Yq >=— < Yp, Tq >
forallk,p,g=1,2,....
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