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ON A QUASI-SELF-SIMILAR MEASURE ON A SELF-SIMILAR
SET ON THE WAY TO A PERTURBED CANTOR SET

IN-S00 BAEK

ABSTRACT. We find an easier formula to compute Hausdorff and packing dimensions
of a subset composing a spectral class by local dimension of a self-similar measure on
a self-similar Cantor set than that of Olsen. While we cannot apply this formula to
computing the dimensions of a subset composing a spectral class by local dimension
of a quasi-self-similar measure on a self-similar set on the way to a perturbed Cantor
set, we have a set theoretical relationship between some distribution sets. Finally
we compare the behaviour of a quasi-self-similar measure on a self-similar Cantor
set with that on a self-similar set on the way to a perturbed Cantor set.

1. INTRODUCTION

Olsen [9] studied a formula to compute the Hausdorff and packing dimensions
of the subset composing a multifractal spectral class of a self-similar set by a self-
similar probability measure. He found the formula using some power equations
essentially, so it is hard to find their solutions. We Baek [5] gave another method
to find it using a set-theoretical relationship between a distribution set and a subset
of same local dimension of a self-similar measure. We find it is more simpler than
that of Olsen for the case of a self-similar Cantor set. Recently we Baek [6] also
generalize Olsen’s results to a perturbed Cantor set Baek [1, 2, 3, 4]. That is, we
found a formula of computing the dimensions of the subset of same local dimension
of a quasi-self-similar measure Baek [6] on a perturbed Cantor set. We find that
the quasi self-simijlar measure in this paper plays a self-similar measure before its
limit level. That is at the n-th level stage to construct a perturbed Cantor set,
the n-th adjusted quasi-self-similar measure behaves like a self-similar measure on a
self-similar set having 2™ contraction ratios. We need a generalized quasi-expansion
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of a point in the self-similar set to develope our theories which also need a strong
law of large numbers. We naturally expected our easy computing method can be
applied to that of a perturbed Cantor set, but in failure. However, we get many
interesting facts of some relationship between quasi-distribution sets and generalized
distribution sets (cf. Lee & Baek [8]).

2. PRELIMINARIES

We recall the definition of a perturbed Cantor set Baek [1]. Let X4 = [0,1]. We
obtain the left subinterval X;; and the right subinterval X, of X; by deleting a
middle open subinterval of X; inductively for each i € {1,2}" , wheren =10,1,2,....
Let B, = Uig(1,23nXi- Then E, is a decreasing sequence of closed sets. For each n,
we set | X; 1|/|Xi| = an+1 and | Xi 9|/| Xi| = bpyq for all i € {1,2}", where | X| denotes
the length of X. We assume that the contraction ratios a, and b, and gap ratios
1 - (an +by) are uniformly bounded away from 0. We call F' = N2, E,, a perturbed
Cantor set Baek [1]. For i € {1,2}*, X; denotes a fundamental interval of the n-
stage of construction of perturbed Cantor set and X, (z) denotes the fundamental
interval X; containing z € F'.

Let R be the set of all real numbers and N be the set of all natural numbers. We
note that if z € F, then there is o € {1,2}" such that

o0

n Iy = {z} (Here olk =11,%2,...,% where o =11,%2,...,%k; lkt+1,---)-

k=0
Hereafter, we use ¢ € {1,2}" and = € F as the same identity freely. For y € R,
we define a quasi-self-similar measure py on a perturbed Cantor set F' to be a Borel
probability measure on F satisfying
| Xi[¥
w0 = I e v o))
for m € Nand i€ {1,2}™.

For n € N we define a self-similar set F,, with contraction ratios generated by

{ak,bx}p—; by a perturbed Cantor set with ap,4r = ax and bpnik = b where h € N
and k € {1,2,---n}. Clearly, F, is a self-similar set (on the way to a perturbed

Cantor set F) having 2" contraction ratios

o (1) 4(2) (n) % _Jar forip=1
Ciryigyin = Gy G5 -+ d; ' where d; = {bk for iy =2
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From now on, we write P,(y) = (p1,...,pn) where pp = ;z%z and 1 <k < n.
We define an n-th adjusted quasi-self-similar measure p, on a perturbed Cantor set
F to be the measure pu, on the perturbed Cantor set Fy. Clearly, u, on Fy is a
self-similar measure on F;, satisfying

i=11,...,0k---yinand 1 < k < n.
We write Ef"(y) for the set of points at which the local dimension of y, on F), is
exactly a, so that

. log py(Br(z))

Pa(y) — [ . 8 hy\BrlZ)) _

E, {z: llmo log 7 a},

where B, (x) is a closed ball with center z and a positive radius r. We write the

above puy on Fy, as yp, () from now on and note that vp,(,) is a self-similar measure
on a self-similar set F,,.

Clearly, we see that a self-similar measure p on a self-similar Cantor set (that is,
F, = F1) satisfying p(X1) = p is 7p.

We write E((,p ) (_E-Lp ) ) for the set of points at which the lower (upper) local dimen-
sion of 7, on a self-similar Cantor set F' is exactly a, so that

E((lp) ={z: hminfl‘)_g”z(B—r(-’ED =a},
=0 logr

+(P) : log vp(Br(z))
Ey, ={z: hr:lj(l)xp——i)?— = a}.
In particular, we write Et(,p ) for the set of points at which the local dimension of v,
on F is exactly o, so that
E® = E® nEP.

If 0 < p < 1, then there is y € R such that Pi(y) = p. So we note that
EP) = EP®) 1, get informations of the dimensions of EP®) we need the following
Proposition. We write the Hausdorff dimension of a set E C R as dimy(F) and its
packing dimension as dimy(E). The lower and upper local dimension of p at z € R
are defined Falconer {7] by
log u(B(z,T))

logr
log p(B(z, r))

dim, = limsup —————~,
imyoep(z) fmsup —— =

dimy, p(z) = ligx:i(r)lf
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Proposition 1 (Falconer [7]). Let E C R be a Borel set and let i be a finite measure.

> s for all x € E and u(E) > 0, then dimy(E) > s.
<s forallz € E, then dimy(F) < s.
> s for allz € E and pu(E) > 0, then dimy(E) > s.
< s for allxz € E, then dimp(E) < s.

(
(a) If dimy,ep(x)
(b) If dimy,.p(z)
(¢) If dimyoep(z)
(d) If dimyoep(z)
Remark 1. If A ¢ EE*® and YPa(y)(A) > 0, then dimg(A) = dimy(4) = a from
the above Proposition.

Lemma 2. Let p be a finite measure on a perturbed Cantor set F or F,,. Then for

any o 2 0,
. logu(B.(z)) . . . log p(Xm(z)) _
b dogr o e R gl

Proof. Tt is obvious from the fact that the contraction ratios are uniformly bounded

away from 0. |

In this paper, we assume that 0log0 = 0 for convenience.

3. MAIN RESULTS

In this section we only consider subsets in Fi,.

Remark 2. Let y € R and o > 0. Fix n € N. Put P,(y) = (p1,...,pn) where

ay
L= and 1<k <n.
A
With respect to ry,...,r, wWe can solve the equation

_ >oro1 (relogpk + (1 — 7) log(1 — p))
k=1 (rklogak + (1 — ri) log b)

g(r1,...,mn, Pa(y))

where y
Dk = yak 'k
ap, + by,
Then there exists z € [~00, 00] such that P, (z) = (r1,...,mn) and (r1,...,7) is
a solution of the above equation a = g(r1,...,mn, Pu(y)). Since

dimg (EE*®)) = g(Pa(2), Pa(2))

holds Baek [5] for n = 1, we naturally expect that it holds also for n > 2. In this
case, we consider a self-similar measure vp, () generated by Pp(y) on a self-similar
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set F,, with contraction ratios generated by {ag,bx}y_;. Later, we see that it is a
wrong conjecture.

Lemma 3. Let

aTrlo
Q&@£M»=Eﬂm BB with

216{1,2}" rrloger
R € § IR ) (n) k) _ )Tk for ix =1
Tivin,in = 85y 8iy - 8i, where s.7 = {1 —rp for i =2’
[P ¢ B ) B () (k) _ )Pk for i =1
Pirig,nin =4 9, "' 95, where g, = {1 e for i =2 ,

Rt 7% 1k

— (1) 4(2) (n) (k) _ )k Jor i =1
and Ciyis,..in = &' dyy” - 0 where d; = {bk for iy =2

then G(Pa(z), Pa(y)) = g(Pa(2), Pa(y))-

Proof. 1t is immediate from the cancelation. O

If z = o € {1,2}Y, then we can express z or ¢ as for zx ; € {1,2}

r= ((x1,17$2,1) sy Tl "7x‘n,1))(w1,2$$2,2)" s Tk2y - - axn,2);- . ) € Fna

which we call a quasi-generalized expansion of x in F,. We denote by n;, ,,..... (z|m)

the number of times the n-tuple (i;,12,...,%,) occurs in the first m places of the
quasi-generalized expansion of

r= ((1171,1,1132,1, vy Ty e mn,l), (1:1,2, Z22y-+ 3 TE2y--- )xn,2)) .. ) € Fn
For each i € {1,2}" and s; € [0,1] we define a generalized distribution set
Fr({siticq1,2yn) containing the finite code i in proportion {si}ic{1,23» by

F‘n({si}ie{l’g}n) = {m e Fn . lim M

m—00 m

= s; for each i€ {1,2}"}.

We denote by n3(zx|m) the number of times the digit 1 occurs in the first k,m
places of the quasi-generalized expansion of

T = ((xl,hw?,l?' .. 1wk,11 Ve ')mn,l)a ($1,2,$2,2,. .. 7:1:19,27' .. 7:01’1,2))' ) € Fn

For (r1,...,7ma) € [0,1]", we define a quasi-distribution set F;(r1,...,7q) containing
the digit 1 in proportion (r1,...,Tn) by

F;(rl,...,rn)={:can:n%i_r)noo%ﬂT-)—=rk for each 1 <k <n}.
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Lemma 4. Fori=iy,4,...,1, and

Sy = 3(1)3(2) cee s(n) where s(k) = {Tk for i =1
1 T2 in ik 1 -7 f07' Zk — 2 ?

{z € Fp: lim ni(alm)

m—r00 m
ny(zxlm)

= s for each i€ {1,2}"}

C {z€F,: lim

m—00

=71, for each 1 <k <n}.

Proof. For m € N,

ni(zelm) _ P, (z|m)
m , m )

=1
We easily obtain it from the limit of each term. 0

Remark 3. In the above Proof, for n = 3,

ny(z1|m) _ ni11(z|m) + niz(z|m) + nig1 (z|m) 4 ni22(z|m)

)

m m m m m
ni(zz|m) _ ni11(z/m) + nii2(zim) + na11{z|m) + nai2(x|m)
m m m m m
n1(z3|m) _ n111(zjm) 4 T (z|m) + ne11(z|m) 4 Taas (z|m)
m m m m m

Remark 4. Since from the strong law of large numbers (cf. Lee & Baek [8])

. ni(zlm .
Ysitieqr,zpn ({r € Fy: ”}1_1)1;0 —‘(—nl—l =s; for each i€ {1,2}"}) =1
we see that
. nNi{Tem
Visiheqrayn ({z € Fn: n%l_r)r(l” _1£_|2 =ry foreach 1<k<n})=1

By the notation in the Preliminaries, we see that a self-similar measure v}, o
in the above is vp,(;) where Py(2) = (r1,...,7n). From now on, we write a general-

ized distribution set

{z € F,: lim ni(elm)
m—oo m

= g; for each i€ {1,2}"}
containing the finite codes i in proportion s; in the above Lemma as F),(P,(2)).

Theorem 5. Fiz n € N and consider a self-similar set F,, with contraction ratios
generated by {ak,bi}i_,. Let y € (—00,00) and consider a self-similar measure
YpP.(y) On Fn where Pu(y) = (p1,...,pn) and pp = E';EE{ for 1 <k < n. Let
z € [-00,00] and consider
9(Pal(2), Pale)) = Ezzln(rk log pi + (1 — 1) log(1 — py))

=1 (Tklogak + (1 — ri) log bk
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where Pp(2) = (r1,...,7n) and 7 = Z+bz —k— for1 <k <n. Then

F*(P, gh® :
w (Pa(2)) © 9(Pa(2),Pa(®))

Proof. Let x € F};(Pn(z)). Then
lim 28 YPa(v) (em(2))
m—oo  log|cm(z)]
- lm > =1 (na(zk|m) log pi + (m — ny(zk|m) log(1 — p))
m—oo Sy (nl(mk|m) logag + (m — ni(xk|m) log bk))
> k=1 (i logp + (1 — 7i) log(1 — pi))
Skt (rilogak + (1 — ri) log by)
= g(Pn(z)’ Pn(y))-

O
Corollary 6. F,,(P,(2)) C Fx(Pa(2)) C EP"(Z) (2),Pa(z)) Wherez € R, and F,(Pp(z)) C
Fi(P.(z))C E Pn()z) Pa(y)) Where z € - oo,oo] and y € R.
Proof. Tt is immediate from Lemma 4 and the above Theorem. a

Remark 5. From now on, we will not designate the ranges of z and y if there is

no confusion. That is, if we consider E o }5:() 2),Pa(2) then z € R and if we consider

Py
By i, patyy) then y € R and z € 00, 00].

Theorem 7. 17,0 (Fi(Pa(2) = 17, Byl pyey) = 1+ Further,

dimpg (Fy (Pa(2))) = g(Pa(2), Pa(2)) = dimy, (F;(Pa(2))) and

. n(z . Pnz
dimp (E (anzz) Pa(2))) = 9(Pn(2), Pa(2)) = dimy ( Q(I:Snzz)P(z)))

Proof. 1t follows from the above Remark. That is, vp,(;)(Fi(Pn(2))) = 1 follows
from F,(Pn(2)) C F(Pa(2)) and vp, ;) (Fa(Pn(z))) = 1 from the strong law of large
numbers. Further,

dimg (Fy (Pa(2))) = g(Pn(2), Pa(2)) = dimy, (F7(Pa(2)))
follows from the above Corollary and Remark 1 in the Preliminaries. Similarly, by
Proposition 1, we have

. P, : Pr,
dimgy (Eg(lg:()z)’p"(z))) = Q(Pn(z)’ Pn(z)) = dlmP (Eg(lg:gz),Pn(z)))‘
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Remark 6.
Fa(Pa(2)) = Fr(Pu(2)) = B30 b
for n =1 (c¢f. Baek [5]). So

. P, . Py
dimg By pyy) = 9(Pa(2), Pu(2)) = dimy (B0, 1 o)

for n = 1. However, from the above Corollary and Theorem, we just find that
9(Pa(2), Pa(2)) is a lower bound for the dimensions of E;}';gf()z), Pa())’

Theorem 8. If s is a real number satisfying

[T +o0) =1,

k=1

then g(Pn(s), P,(s)) = s. Further, Es"(s) = F, and dimg (F,) = dim,(F,) = s.

Proof. Put
8

ap

== e ing(ry,...,TnyT1,.-. )
k k

Tk

Then we easily see that

_ s(Ypoy(rrlogag + (1 —rg)loghy)) — 25— log(ag + b3)
g(P‘n(S), Pn(s)) - Ezzl (rk log ar + (1 _ Tk) log bk) =s.

Further, by Lemma 2 in the Preliminaries we easily see that E; n(s) F, and

. n . P (s
dimpy (E;}zf,fgs>,p,,(s))) = Q(Pn(s)’Pn(s)) = dimy, (Eg(P(,,zs),Pn(s)))-

Proposition 9. Let

nTrlogp
H(Pa(y)) = Lrefia) ——— with
216{1,2}" rr 108 Cr
B(q) i =1
BN ¢ (n) k) _ ) prlak for ix
Piyyoin = 85 0085, where s;7 = {(1 —pR)PD  for 4 =2

_ 1) _(2) (n) (k) _ )Pk for ip =1
p‘ilin)"' 7i'n. - Q’il qi2 e qiﬂ where qik - {1 _ pk for ik _ 2 y

ar for iy =1

1) ,(2 ( (k) _
and cil,iz,...,‘in = z(l)dz(z) . 'd‘l:) where dik - {bk for 'Lk =92 )
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Then the solution g satisfying

H(Pn(y)) = and H (pk‘lakﬂ(‘ﬂ +(1 _pk)qbkﬁ(q)) -1
k=1

gives ag + 3(q) as the dimensions of Ea"(y)(C F,).
Proof. It is immediate from (11.30) and (11.35) in Falconer [7]. a

Remark 7. In the above Proposition, if ¢ = 1 then 8(g) = 0 in the equation

n

H (pkqakﬂ(") +(1- pk)qbkﬂ(q)) =1
k=1

Further, for ¢ = 1 let « = H (Pn(y)). Then by the above Proposition the
dimensions of EL*™ are o. By the way, a = H(Pa(y)) = G(Paly), Pa(y)) =
g(Pn(y), Pa(y)) from Lemma 3. By the Theorem 7, we also see that the dimensions
of EZ*®) are g(Pa(y), Paly)) = o

Theorem 10.

n(y) Fn(2)
For n=1,E5 b = Eadils b )
) (y) P,, z
For n > 2, in general, EP» 9(Pa(2),Pa(y)) #F (,Sn()z )P (2))’

Further, dimpyg (Eg('}gf()z),Pn(y))) = dim, ( g(n}gf()z) Pn(y))) 2 g(Pn(Z), Pn(z))'

Proof. For n = 1, it follows from Baek [5]. For n > 2, it is immediate from the

above Proposition and Lemma 3.
dimsr (B {5ty paion) = 4ty (Bl pu) 2 9(Pa(2), Pa(2)
follows from Remark 6. 0
Remark 8. In the above Proof, for n > 2 we cannot guarantee that
pkqakﬁ(q) +(1- pk)qbkﬂ(q) =1

for each 1 < k < n in the above Proposition whereas ry + (1 — r¢) = 1 for each
1<k £ nin Lemma 3. However, if we guarantee it,

a = H(Pn(y)) = G(Pn(z)a P‘n(y)) = g(Pn(z)a Pn(y))
where P,(z) = {pkqakﬁ(‘ﬂ}zzl from Lemma 3. Then we easily see that

9(Pa(2), Pa(2)) = G(Pa(2), Pa(2)) = aq + B(q),
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Pr(y)
which is the dimensions of £ o Pj’(z) Pay))’ But we know

. Pp(z . Pp(z
dimp (Eg(P(n()z),P,.(z))) = g(Pn(z), Pn(z)) = dim,, (Eg(P(n()z),Pn(z)))

. . Pn(y)
from Theorem 7. This gives many examples for Eg( Pa(2),Pa(y)) #E Pn (z Pa (z))
n > 2. But for n = 1, letting

p19a1%9 + (1 - p1)9,P9 =1 and

r1 = p1%a;’@  and

Ty = 1-— T = (1 —-pl)qblﬁ(q)
in Lemma 3, we have Pi(z) = r1 and g(r1,71) = ag + B(g). Precisely, the solution
q satisfying

1
H(P(y)) = H(p H pkqak (1- pk)qbkﬁ(q))

gives 71 = p1%;#@ and g(r1,71) = ag + B(q). Further, we see that

g(Pn(z), Pn(y)) 2 g(Pn(z), Pn(z))

from the Lagrange multiplier theorem. However, we also see it from the Proposition

1 and the above theorem, that is
9(Pa(2), Pa(2)) < dimpr (BS5¥),) 5 ) < 9(Pa(2), Paly))-

Theorem 11. Let s be a real number satisfying
H(ai +b;)=1 andlet z € [—00,0].
k=1

Then for any y # y' in R,

._ P (y) Pn(y’) .
for n=1, Egp i) paw) = Eo(Puiz)batwy) F VF 5

for n > 2, we cannot guarantee

P"(y) P (y’) .
Eg(Pn(Z) Pu(y)) — Eg(P,.(z),P,,(y')) if y#s.

Proof. 1t is immediate from the above Theorem and Baek [5]. O
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