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TWO FORMS OF THE AXIOM OF CHOICE AND
WELL-ORDERING IN AN ELEMENTARY TOPOS

Ic SunGg Kim

ABSTRACT. The purpose of this paper is to show the relationships between three
forms of the axiom of choice and well-ordering in an elementary topos.

1. INTRODUCTION

In the topos Set, the aziom of choice can be expressed as the following three
equivalent forms of (AC1), (AC2) and (AC3).

(AC1) Every epimorphism is a retraction (¢f. Goldblatt [2]).

(AC2) For any noninitial object A and f: A — B, there exists a morphism g : B —
A such that fogo f = f (cf. Johnstone [3]).

(AC3) For any noninitial object A, there exists o : Q4 — A such that for all f:1 —
QA, we have oo f € f' where f' : A’ — A is a monomorphism, provided that
evo (f X i4) is not the characteristic morphism of 0 — A (cf. Penk [7]).

Penk (7] showed that (AC2) is equivalent to (AC3) in a topos with the terminal
object as a generator. Also Mawanda [6] showed that (AC1) is equivalent to (WO)
in a Boolean topos. In this paper, we show that (WO) implies (AC2) in a topos in
which every object is an abstract retract and the reverse holds in a Boolean topos.
Also we show that (WO) implies (AC3) in a bivalent topos and the reverse holds in
a Boolean topos.
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2. PRELIMINARIES

In this section, we state some definitions and properties which will serve as the
basic tools for the arguments used to prove our results.

Definition 2.1. An elementary topos is a category £ that satisfies the following;

(T1) £ is finitely complete,
(T2) £ has exponentiation,
(T3) £ has a subobject classifier.

Definition 2.2. A topos £ is called bivalent if @ = {T, L}.

Definition 2.3. A topos £ is called Boolean if for every object D in &, (Sub(D), €)
is a Boolean algebra where Sub(D) is the class of monomorphisms with common
codomain D, and we say g € f if there exists a morphism h : B — A such that
foh=gwhere f: A— D and g : B — D are monomorphisms.

Proposition 2.4. For any topos £, the following statements are equivalent,

(1) € is Boolean,

(2) Sub(f2) is a Boolean algebra,

(3) T:1— Q has a complement in Sub(Q),

(4) L:1— Q is the complement of T in Sub(2),
(5) TUL ~1g in Sub(Q),

(6) & is classical,

(7) i1 : 1 —> 141 is a subobject classifier.

For the proof see Goldblatt [2].

Ezample 2.5. The category M-Set is a non-Boolean topos. For the proof see Gold-
blatt [2], Madanshekaf & tavakoli [5] and Ebahimi & Mahmoudi [1].

Definition 2.6. A topos is called well-pointed if it satisfies the extensionality prin-
ciple for morphism, i.e., if f,g : A — B are a pair of distinct parallel morphisms,
then there is an element a : 1 — A of A such that foa # goa.

Lemma 2.7. In a well-pointed topos £, every object is an absolute retract.
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Proof. Since £ is well-pointed, for any monomorphism m : A — B there exists a
monomorphism —m : —A — B such that the following square

0 — A

Lol

is a pushout.
Forig : A— Aandao!: -A— Awhere!: -A — 1landa:1— A, the

following square
0 — A

-

-A— A
ao!

commutes.

Thus, there exist unique morphism ¢ : B — A such that t om = i4. d

Definition 2.8. A topos £ satisfies well-ordering (WO) if every noninitial object
of £ has an ordering with minimal choice, i. e., for any P and ¢ : U — QF, if there
exist & : V — U and p: V — P such that (qo, p) factors through €p— QF x P,
then there exists ag : Vp — U and py : Vo — P such that (qao, po) factors through
€p, and such that for all 3 : W — Vp and all p; : W — P, if (qoo3,p1) factors
through €p, then (po3,p1) factors through a monomorphism P, — P x P.

3. MAIN PART

Theorem 3.1. If every object is an absolute retract in a topos €, then (WO) implies
(AC2).

Proof. Let f : A — B be a morphism in £, then there exist an epimorpmism
e: A — X and a monomorphism m : X — B such that f = m o e. By hypothesis,
there exists a morphism ¢ : B — X such that ¢ om = ix. We only show that there
is a morphism s : X — A such that f = fo(sot)of = f. Sincee: A — X isan
epimorphism, there is a morphism ¢ : X — Q4 which is the interpretation of the
term {ale(a) = z}. By definition of (WO), we can find an epimorphism r : V — X
and a morphism n : V — A such that n is a minimal choice of gr. Since every
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epimorphism is a coequalizer, there are morphisms u,v : W — V such that the

following square
W ==V

vl J
1% — X
commutes.
Thus we get gorov = gorou. Also nu, nv are both minimal choice of gorov =
g or ou. By definition of (WO), we can find nu = nv. Since every epimorphism is
a coequalizer, there is a morphism s : X — A such that sor = n. Also there is a
morphism ¢ : X —€ 4 such that kos =c where k: A —€ 4 and €4 is the subobject
classified by ev : 24 x A — 0. Then we have (g, s) = loc = lokos = (goeos, 5) where
l:e4— Q4 xA. Since ¢ is a monomorphism, we have that f = fo(sot)of = f. [

Theorem 3.2. In a Boolean topos £, (AC2) implies (WO).

Proof. Let Xy be a noninitial object in £. Since £ satisfies (AC2), there is a mor-
phism 9 : NXo — X such that ¢ o g; € g, where NXj is the object of nonini-
tial subobjects of Xy with the usual ordering, g; : U — NXj is a morphism and
g; : Xy — Xo is a monomorphism. Since £ is Boolean, we get that —(v o go) = 1
where the pullback of ¢ o gop and —(3 0 gg) is the initial object, —(¢) 0 g1) = g2 where
the pullback of ¥ o g; and —(% 0 g;1) is the initial object, etc. Generally, we get that
—(¢ogn—1) = gn where the pullback of $ogn_1 and —(¢p0gn—_1) is the initial object.

Thus we construct ¢ : Xg — NXj such that Im(¢) is the subobject of NXj
consisting of gg, ~(¢ 0 go), —(¥ 0 g1),--- and —(¢ o gm—1), where —gp, is an initial
object, and ¥ o ¢ = ix,. Then Im(¢) is linearly ordered with minimal choice. Since
¢ is a monomorphism, Xy has an ordering with minimal choice. O

Theorem 3.3. In a bivalent topos €, (WO) implies (AC3).

Proof. For a product object Q4 x © together with two projections q; : 94 x Q — Q4
and gp : 94 x Q@ — Q in &, there are morphisms (p;, ev) : Q4 xA4A—- 04 xQand
(iga,t) : Q4 — Q4 x Q where t : Q4 — Q is a morphism such that tod = T for
ald:1— Q4%and p; : Q4 x A — Q4 is a projection. By bivalency, (p1,ev) is
an epimorphism. Since every epimorphism has a right inverse, there is a morphism
h: Q4 xQ — Q4 x Asuch that (p;,ev) o h = igayn. We construct a morphism
p2 0 ho(iga,t) : Q4 — A where py : 94 x A — A. We show that pp o h o{iga,t)oc €
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k where ¢ : 1 — Q4 is any morphism and k : B — A is a monomorphism. Since, for
some (d,a) :1 - Q4 x A,

h o(iga,tyo c=h olc, T) = (d,a) : 1 — Q4 x 4,
it yields d = p; o{(d,a) = p1oh o{c, T) = ¢y o(ps,ev)o ho (¢, T) =g o{c, T) = c. We
only show that a € k. Since ev o{c,a) = evoh o(c, T) = evoh o(p1,ev)o{c,kob) =
g2 o{p1,ev)o h o(pj,ev)o{c,kob) =ev o{c,kob) where b:1 — B, it implies
a € k. Therefore it turns out that pooh o (iga,t)o c=ps o(d,a) =a € k. |

Theorem 3.4. In a Boolean topos £, (AC3) implies (WO).

Proof. Since (ACL) is equivalent to (WO) in a Boolean topos (cf. Mawanda [6]), we
only claim that (AC3) implies (AC1) in a Boolean topos. Let e : X — Y be an
epimorphism and z : 1 — X be any morphism in £. Since (AC3) holds in &, we
construct the following morphism

cgofo{}:Y - X

where {}: Y - QY, Q¢: QY - 0¥ and 6 : X - X.

We claim that eoocoQ®o{}oeox = eox. Since eox : 1 — Y is a monomorphism,
the terminal object 1 is a pullback of the T:1 — 2 and Xeoz : Y — @, and V is a
pullback of T:1 — Q and xeoz 0€: X = Q wherek:V - X is a monomorphism.

|4 ', 1 n, 1
kl eozl T
X Y — )

e Xeox

By (AC3), for any 00Q%0{}oeoz : 1 — X where o : QX — X and Q¢o{}oeoz:
1 — QX there exists a morphism ¢ : 1 — V such that kot = g0 Qo {}oeoz. And
by the property of pullback, the left square of the above diagram is also a pullback
square. Hence it yields

eocoflfo{}oeox=cokot=coxolot=eozoi=coz.
Since 1 is a generator and e is an epimorphism, we get eococ o Q%0 {} =iy. O
Corollary 3.5. In a well-pointed topos £, (AC2), (AC3) and (WO) are equivalent.

Proof. By Lemma 2.7, Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4.
O
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Remark. Investigate the relationships between the forms of the axiom of choices and
well-ordering in a weak topos which has a weak subobject classifier.
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