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LINEAR MAPPINGS, QUADRATIC MAPPINGS AND
CUBIC MAPPINGS IN NORMED SPACES

CHUN-GIL PARK AND HEE-JUNG WEE

ABSTRACT. It is shown that every almost linear mapping kA : X — Y of a complex
normed space X to a complex normed space Y is a linear mapping when h(rz) =
rh(z) (r > 0,7 # 1) holds for all z € X, that every almost quadratic mapping
h : X — Y of a complex normed space X to a complex normed space Y is a
quadratic mapping when h(rz) = r?h(z) (r > 0,7 # 1) holds for all z € X, and
that every almost cubic mapping h : X — Y of a complex normed space X to a
complex normed space Y is a cubic mapping when h(rz) = r2h(z) (r > 0,r # 1)
holds for all z € X.

1. INTRODUCTION

Let X and Y be Banach spaces with norms || - || and || - ||, respectively. Consider
f:X — Y to be a mapping such that f(¢z) is continuous in ¢t € R for each fixed
z € X. Assume that there exist constants § > 0 and p € [0,1) such that

If(z +v) = f(z) = F)l < 0l + lly]I?)

for all z,y € X. Rassias [10] showed that there exists a unique R-linear mapping
T:X — Y such that

1/@ ~T@ < 5=

for all z € X. Gavruta (2] generalized the Rassias’ result: Let G be an abelian group

el

and Y a Banach space. Denote by ¢ : G x G — [0, ) a function such that

ox
Gx,y) =Y 277 p(Px,2y) < 00
-
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for all z,y € G. Suppose that f : G — Y is a mapping satisfying

If(z+y) - f(z) - FW)Il < o(=,y)
for all z,y € G. Then there exists a unique additive mapping T : G — Y such that

1£() - T@)] < 5(z,2)

for all z € G. Park [9] applied the G&vruta’s result to linear functional equations in
Banach modules over a C*-algebra.
A mapping f: X — Y is called C-quadratic if f satisfies the functional equation

fl+y)+ flz-y) =2f(x) +2f(y) and f(Az) = N*f(z)
for all z,y € X. Skof [11] was the first author to treat the Hyers-Ulam stability of

a quadratic functional equation. Czerwik [1] generalized the Skof’s result.
A mapping f: X — Y is called C-cubic if f satisfies the functional equation

flz+2y) + f(z ~2y) + 6f(z) = 4f(z +y) +4f(z ~y) and f(Az) = Nf(z)
for all z,y € X. Jun & Kim [4] were the authors to treat the Hyers-Ulam stability
of a cubic functional equation.

The stability problems of functional equations have been investigated by several
authors (3, 5, 6, 7].

Throughout this paper, let X and Y be complex normed spaces with norms || - ||
and || - ||, respectively, and r (r # 1) a positive real number.

Using the stability methods, we prove that every almost linear mapping h : X —
Y is a linear mapping when h(rz) = rh(z) holds for all z € X, that every almost
quadratic mapping h : X — Y is a quadratic mapping when h(rz) = r2h(z) holds
for all z € X, and that every almost cubic mapping h : X — Y is a cubic mapping
when h(rz) = r3h(z) holds for all z € X.

2. LINEAR MAPPINGS, QUADRATIC MAPPINGS, AND
CUBIC MAPPINGS IN COMPLEX NORMED SPACES

We are going to investigate linear mappings in complex normed spaces.

Theorem 1. Let h: X — Y be a mapping satisfying h(rz) = rh(z) for allz € X
for which there ezists a function ¢ : X2 — [0,00) such that

() X520 me(riz,ry) < oo for z,y € X, and
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(i) lIh(uz + py) — ph(z) — phy)ll < @(z,y) forallp e T :={A e C| |\ =1}
and all z,y € X.

Then the mapping h: X — Y is a C-linear mapping.

Proof. Since h(0) = rh(0), h(0) = 0. Put u = 1 € T! in (ii). By (ii) and the
assumption that h(rz) = rh(z) for all z € X,

1 1
Ih(z +y) = h(z) = h)ll = ZUh(r"z +17y) = h(r"e) ~ R("Y)|| < Z (e, r™y),
which tends to zero as n — oo by (i). So
Mz +y) = h(z) + h(y) for all z,y € X.

Put y = 0 in (ii). By (ii) and the assumption that h(rz) = rh(z) for all z € X,

1 , 1
Ih(pz) — uh(z)| = Sl pz) - ph(r"e)l| < Zo(r"z,0),
which tends to zero as n — oo by (i). So
(1) h(uz) = ph(z) for all p € T and all z € X.

Now let A € C (A # 0) and M an integer greater than 4|A|. Then

<1< 2_1
4 3 3

A
M
By Kadison & Pedersen [8, Theorem 1}, there exist three elements uy, po, ug € T?
such that 3£ = p1 + pg + p3. So by (1)
A
M
1 A
=M h(= -3
(33372

M A
= —h(32

3 3772)

M
= gh(uw + pox + p3x)

h(\z) = h(-"? 3

z)

= %(h(ulx) + h(paz) + h(usz))

M
= ?(/‘1 + p2 + p3)h(x)

M )

= Mh(z)
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for all z € X. Hence

h(¢z + ny) = h(Cx) + h(ny) = Ch(z) + nh(y)
for all {,n € C(¢,n#0) and all z,y € X. And h(0z) = 0 = Oh(z) for all z € X. So
the mapping h : X — Y is a C-linear mapping, as desired. a

Corollary 2. Letr > 1. Let h: X — 'Y be a mapping satisfying h(rz) = rh(z) for
all z € X for which there exist constants > 0 and p € [0,1) such that

h(uz + py) — phiz) — ph(y)ll < 61| + ||ylIP)

for allp € T and all z,y € X. Then the mapping h : X — Y is a C-linear mapping.
Proof. Define ¢(z,y) = 0(]|z||” + ||y||P), and apply Theorem 1. O

Corollary 3. Let 0 <7 < 1. Let h: X — Y be a mapping satisfying h(rz) = rh(z)
for all z € X for which there exist constants € > 0 and p € (1,00) such that

Ih(uz + py) — ph(z) — phy)ll < 0(lzl” + [ly]IP)
for all p € T! and all z,y € X. Then the mapping h : X — Y is a C-linear mapping.

Proof. Define ¢(z,y) = 0(||z{|” + ||y||?), and apply Theorem 1. a

Theorem 4. Let h: X — Y be a mapping satisfying h(rx) = rh(z) for allz € X
for which there exists a function ¢ : X2 — [0,00) satisfying (i) such that

(iii) |h(uz + py) — ph(z) — phy)|| < o(z,y)

for p=1, 4, and all z,y € X. If h(tz) is continuous int € R for each fized z € X,
then the mapping h: X — Y is a C-linear mapping.

Proof. Put p = 1 in (iii). By the same reasoning as the proof of Theorem 1, the
mapping h : X — Y is additive. By the same reasoning as the proof of Rassias 10,
Theorem]|, the additive mapping h: X — Y is R-linear.

Put p = in (iii). By the same method as the proof of Theorem 1, one can obtain
that

h(iz) = ih(x)

for all z € X. For each element A € C, A = s + it, where s,t € R. So

h(Az) = h(sz + itz) = sh(z) + th(iz) = sh(z) + ith(z) = (s + it)h(z) = Ah(z)
for all A € C and all z € X. So

h(¢z +ny) = h(¢z) + h(ny) = Ch(z) + nh(y)
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for all {,n € C, and all z,y € X. Hence the mapping A : X — Y is C-linear, as
desired. 0

Now we are going to investigate quadratic mappings in complex normed spaces.
Theorem 5. Let h: X — Y be a mapping satisfying h(rz) = r2h(z) for allz € X
for which there exists a function ¢ : X? — [0,00) such that

(iv) Y520 Free(riz, riy) < oo,
() 1h(Az + Ay) + h(Az — dy) — 2M%h(z) - 20%h(y)|| < ¢(z,y)

for all A € C and all z,y € X. Then the mapping h : X — Y is a C-quadratic
mapping.
Proof. Since h(0) = r?h(0), h(0) = 0. Put A =1 in (v). By (v) and the assumption
that h(rz) = r2h(z) for all z € X,
[17(z + y) + h(z — y) — 2h(z) — 2h(y)||
1 1
= alhG +7%) + Bl — ry) = 2h(s75) - ()| € pplria, 1),
which tends to zero as n — oo by (iv). So
h(z +y) + h(z — y) = 2h(z) + 2h(y)

for all z,y € X.
Put y = 0in (v). By (v) and the assumption that A(rz) = r?h(z) for all z € X,

1

2h(2) — 22%h(@)]| = = 120" Az) ~ 222 S (5™, 0),

which tends to zero as n — oo by (iv). So
h(Az) = \2h(z)

for all A € C and all z € X. So the mapping h: X — Y is a C-quadratic mapping,
as desired. O
Corollary 6. Letr > 1. Let h: X — Y be a mapping satisfying h(rz) = r?h(z)
for all x € X for which there exist constants § > 0 and p € [0,2) such that

IA(Az + Ay) + ROz — Ay) — 2A%h(z) — 2X°R(y)|| < 6(|z|P + ||y|P)
for all A € C and all z,y € X. Then the mapping h : X — Y is a C-quadratic
mapping.

Proof. Define p(z,y) = 0(||z||P + ||y||P), and apply Theorem 5. a



190 CHUN-GIL PARK AND HEE-JUNG WEE

Corollary 7. Let0 <r < 1. Leth: X — Y be a mapping satisfying h(rz) = r’h(x)
for all z € X for which there exist constants § > 0 and p € (2,00) such that

IR(Az + Ay) + h(Az — Ay) — 2X%h(z) — 22%h(y)|| < 6(l1|P + ||vIP)
for all X € C and all z,y € X. Then the mapping h : X — Y is a C-quadratic
mapping.
Proof. Define ¢(z,y) = 8(||z||” + {|y||?), and apply Theorem 5. O

We are going to investigate cubic mappings in complex normed spaces.

Theorem 8. Let h: X — Y be a mapping satisfying h(rz) = r3h(z) for allz € X
for which there ezists a function ¢ : X% — [0, 00) such that

(Vi) 2320 myep(riz, riy) < oo,
(vii) ||R(Az + 2Xy) + h(Az — 2Xy) + 6h(Ax) — 4X3h(z + y) — 4 3h(z — v)|| < v(z,Y)

forallA € C and all x,y € X. Then the mapping h: X — Y is a C-cubic mapping.

Proof. Since h(0) = r3h(0), h(0) = 0. Put A = 1 in (vii). By (vii) and the assump-
tion that h(rz) = r3h(z) for all z € X,
|h(z + 2y) + h(z — 2y) + 6h(z) — 4h(z +y) — 4h(z — y)||
= T%Hh(r”x-}-Zr"y) + h(r"z—2r"y) + 6h(r"z) — 4dh(r"z+r"y) — 4h(r"z—r"y)||
< -7é—n<p(7‘"w,7‘"y),
which tends to zero as n — oo by (vi). So
h(z + 2y) + h(z — 2y) + 6h(z) = 4h(z + y) + 4h{z — y)

for all z,y € X.
Put y = 0 in (vii). By (vii) and the assumption that h(rz) = r3h(z) for all
z € X,

1
I8h(3) ~ 8X°h(z)|| = 5 [18h(:"Aa) ~ 82| < ~(r"2,0),
which tends to zero as n — oo by (vi). So
r(Az) = A3h(z)

for all 4 € C and all z € X. So the mapping h: X — Y is a C-cubic mapping, as
desired. O
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Corollary 9. Let r > 1. Let h: X — Y be a mapping satisfying h(rz) = r3h(z)
for all z € X for which there exist constants § > 0 and p € [0, 3) such that

ROz + 2Xy) + h(Az — 2Xy) + 6h(Az) — 4X3h(z +y) — 4N3h(z — y)|| < 6(||=|[ + ||y|1P)
for all A € C and all z,y € X. Then the mapping h: X — Y is a C-cubic mapping.

Proof. Define p(z,y) = 0(||z||? + ||y||?), and apply Theorem 8. O

Corollary 10. Let 0 < r < 1. Let h: X — Y be a mapping satisfying h(rz) =
r3h(z) for all x € X for which there ezist constants 6 > 0 and p € (3,00) such that

|h(Az +2Xy) + h(Az — 2)y) +6h(Az) — 4X3h(z +y) — 4X3h(z — )| < 8()||P +||y]|P)

forall A € C and all z,y € X. Then the mapping h: X — Y is a C-cubic mapping.

Proof. Define p(z,y) = 6(]|z||? + ||y||?), and apply Theorem 8. O
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