ESSENTIAL SPECTRA OF w-HYPONORMAL OPERATORS

HYUNG KOO CHA, JAE HEE KIM, AND KWANG IL LEE

ABSTRACT. Let $\mathcal K$ be the extension Hilbert space of a Hilbert space $\mathcal H$ and let ϕ be the faithful *-representation of $\mathcal B(\mathcal H)$ on $\mathcal K$. In this paper, we show that if T is an irreducible w-hyponormal operators such that $\ker(T) \subset \ker(T^*)$ and $T^*T - TT^*$ is compact, then $\sigma_e(T) = \sigma_e(\phi(T))$.

1. Introduction

Let \mathcal{H} be a complex Hilbert space. The *-algebra of all bounded linear operators on \mathcal{H} is denoted by $\mathcal{B}(\mathcal{H})$. For an operator T in $\mathcal{B}(\mathcal{H})$, we denote the spectrum, the point spectrum, the approximate point spectrum and the essential spectrum by $\sigma(T)$, $\sigma_p(T)$, $\sigma_{ap}(T)$, and $\sigma_e(T)$, respectively. A complex number z is a normal approximate propervalue of T if there exists a sequence $\{x_n\}$ of unit vectors such that $(T-z)x_n \to 0$ and $(T-z)^*x_n \to 0$. The set of all normal approximate propervalue is called the normal approximate spectrum of T and it denote by $\sigma_{na}(T)$.

Aluthge [1] first introduced p-hyponormality for operators; An operator T is said to be p-hyponormal for $p \in (0,1]$ if $(T^*T)^p \geq (TT^*)^p$. If p=1, T is called hyponormal and if $p=\frac{1}{2}$, T is called semi-hyponormal. It is well known that a p-hyponormal operator is a q-hyponormal operator for $0 < q \leq p$ by the Löwner-Heinz theorem.

Let T = U|T| be the polar decomposition of T, where U is a partial isometry, |T| is a positive square root of T^*T and $\ker T = \ker |T| = \ker U$. Aluthge [1] introduced the operator $\widetilde{T} = |T|^{1/2}U|T|^{1/2}$, which is called the Aluthge transformation of T.

Received by the editors June 27, 2003 and, in revised form, November 12, 2003.

²⁰⁰⁰ Mathematics Subject Classification. 47B20, 47A10.

Key words and phrases. w-hyponormal, approximate point spectrum, essential spectrum, irreducible operator.

This paper was supported by research fund of Hanyang University, Seoul, Korea, 2002.

Aluthge & Wang [2] first introduced a new operator that an operator T is said to be w-hyponormal if $|\widetilde{T}| \geq |T| \geq |\widetilde{T}^*|$. Evidently, if T is w-hyponormal, then \widetilde{T} is semi-hyponormal.

They proved that if an operator T is p-hyponormal, then it is w-hyponormal and also show the following results:

Theorem 1.1 (Aluthge & Wang [4]).

(1) An operator T is w-hyponormal if and only if

$$|T| \ge (|T|^{\frac{1}{2}}|T^*||T|^{\frac{1}{2}})^{\frac{1}{2}}$$
 and $|T^*| \le (|T^*|^{\frac{1}{2}}|T||T^*|^{\frac{1}{2}})^{\frac{1}{2}}$.

(2) If T is a w-hyponormal operator, then $\sigma_{ap}(T) - \{0\} = \sigma_{na}(T) - \{0\}$.

Fujii, Jung, S. H. Lee, M. Y. Lee & Nakamoto [11] introduced a new class A(p,q) of operators that for p,q>0, an operator T belongs to A(p,q) if it satisfies an operator inequality

$$(|T^*|^q|T|^{2p}|T^*|^q)^{\frac{q}{p+q}} \ge |T^*|^{2q}.$$

Recently, Ito & Yamazaki [12] introdued a new class wA(p,q) of operators that for p,q>0, an operator T belongs to wA(p,q) if it satisfies an operator inequalities

$$\left(|T^*|^q|T|^{2p}|T^*|^q\right)^{\frac{q}{p+q}} \ge |T^*|^{2q} \quad and \quad |T|^{2p} \ge \left(|T|^p|T^*|^{2q}|T|^p\right)^{\frac{p}{p+q}}.$$

In Ito & Yamazaki [12], they obtained the following results:

Theorem 1.2 (Ito & Yamazaki [12]). For each p > 0 and q > 0, the following assertions hold:

- (1) Class A(p,q) coincides with class wA(p,q).
- (2) Class $A(\frac{1}{2}, \frac{1}{2})$ coincides with the class of w-hyponormal operators (i.e., class $wA(\frac{1}{2}, \frac{1}{2})$).

An operator T is said to be reducible if it has a nontrivial reducing subspace. If an operator is not reducible, then it is called irreducible.

Cha [6] constructed an extension \mathcal{K} of \mathcal{H} by means of all weakly convergent sequences in \mathcal{H} and the Banach Limit, and obtained the faithful *-representation ϕ of $\mathcal{B}(\mathcal{H})$ on \mathcal{K} .

In this paper, using the faithful *-representation ϕ , for an irreducible w-hyponormal operator T with $\ker(T) \subset \ker(T^*)$, we investigate the relation between the essential spectrum of T and the essential spectrum of $\phi(T)$.

2. The main Theorem

Let $C^*(T)$ be the C^* -subalgebra of $\mathcal{B}(\mathcal{H})$ generated by a single operator T and identity. By a character on a C^* -algebra we mean a multiplicative linear functional. If \mathcal{A} is a C^* -algebra with identity, then its commutator ideal is the closed ideal generated by the commutator ab - ba for $a, b \in \mathcal{A}$.

Bunce [5] established a kind of the reciprocity among the character of single generated C^* -algebra and the approximate spectra of the generators and he proved the following theorem:

Theorem 2.1 (Bunce [5]). If T is a hyponormal operator, then for all $\lambda \in \sigma_{ap}(T)$ there is a character ψ on the C^* -algebra $C^*(T)$ such that $\psi(T) = \lambda$.

Enomoto, Fujii & Tamaki [10] was generalized Bunce's result as following:

Theorem 2.2 (Enomoto, Fujii & Tamaki [10]). A complex number $\lambda \in \sigma_{na}(T)$ if and only if there is a character ψ of $C^*(T)$ such that $\psi(T) = \lambda$.

Let $C^*(T_i : i \in \Gamma)$ be the C^* -algebra generated by $\{T_i : i \in \Gamma\}$ and the identity operator, and let \mathcal{I} be the commutator ideal of $C^*(T_i : i \in \Gamma)$.

S. G. Lee [13] obtained that the quotient algebra $C^*(T_i: i \in \Gamma)/\mathcal{I}$ is isometrically *-isomorphic to $C(\sigma_n(T_i: i \in \Gamma))$, where $\sigma_n(T_i: i \in \Gamma)$ is the joint normal spectrum of $\{T_i: i \in \Gamma\}$.

By Theorem 1.1 and Theorem 2.2, we have the following result:

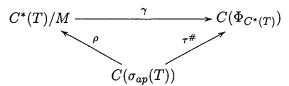
Corollary 2.3. Let T be a w-hyponormal operator with $\ker(T) \subset \ker(T^*)$. Then $\lambda \in \sigma_{ap}(T)$ if and only if there is a character ψ of $C^*(T)$ such that $\psi(T) = \lambda$.

If $\Phi_{\mathcal{A}}$ is the set of all character on \mathcal{A} and M is the commutator ideal of \mathcal{A} , then $M = \bigcap \{h^{-1}(0) : h \in \Phi_{\mathcal{A}}\}$ and $\Phi_{\mathcal{A}}$ is the maximal ideal space of \mathcal{A}/M . With this statement, we have $\mathcal{A}/M \cong C(\Phi_{\mathcal{A}})$ under the Gel'fand transform, $a+M \to \hat{a}$, where $\hat{a}(h) = h(a)$ for a in \mathcal{A} and h in $\Phi_{\mathcal{A}}$ (Conway [8, 9]).

Lemma 2.4. If an operator T is w-hyponormal with $\ker(T) \subset \ker(T^*)$, there is an isometric *-isomorphism of $C^*(T)/M$ onto $C(\sigma_{ap}(T))$, where A+M is mapped to the function z.

Proof. Let $\tau: \Phi_{C^*(T)} \to \sigma_{ap}(T)$ be defined by $\tau(\psi) = \psi(T)$. By Corollary 2.3 this map is surjective. If $\psi(T) = \psi'(T)$ for $\psi, \psi' \in \Phi_{C^*(T)}$, then $\psi = \psi'$, since T is

generator of $C^*(T)$, and ψ, ψ' are continuous on $C^*(T)$. So τ is injective. It is also easy to see that τ is continuous. Since $\Phi_{C^*(T)}$ is compact, τ is a homeomorphism. Thus the map $\tau^\#: C(\sigma_{ap}(T)) \to C(\Phi_{C^*(T)})$ defined by $\tau^\#(f) = f \circ \tau$ is an isometric *-isomorphism. We define a map $\rho: C(\sigma_{ap}(T)) \to C^*(T)/M$ so that the following diagram commutes:



where the Gel'fand transform $\gamma: C^*(T)/M \to C(\Phi_{C^*(T)})$ is an isometric *-isomorphism. Then ρ is clearly an isometric *-isomorphism.

Cha [6] introduced an extension \mathcal{K} of \mathcal{H} by means of all weakly convergent sequences in \mathcal{H} and the Banach Limit, and obtained the faithful *-representation ϕ of $\mathcal{B}(\mathcal{H})$ on \mathcal{K} .

In order to show our results, we use the following propositions.

Proposition 2.5 (Cha [6, 7]). There exists a faithful *-representation ϕ of $\mathcal{B}(\mathcal{H})$ on \mathcal{K} with the following properties:

- $(1) \|\phi(T)\| = \|T\|.$
- (2) $\sigma(T) = \sigma(\phi(T))$.
- (3) $\sigma_{ap}(T) = \sigma_p(\phi(T)).$
- (4) If T is a compact operator on \mathcal{H} , then so is $\phi(T)$ on \mathcal{K} .
- (5) If T is an irreducible operator on \mathcal{H} , then so is $\phi(T)$ on \mathcal{K} .

Remark. The Proposition 2.5 (5) does not mean a representation of a C^* -algebra is irreducible. It implies the concept of a simple irreducible operators.

Proposition 2.6 (Cha [7]). We have the following properties.

- (1) The C^* -algebra $C^*(T)$ is isometrically *-isomorphic to the C^* -algebra $C^*(\phi(T))$.
- (2) If M is the maximal ideal of $C^*(T)$, then $\phi(M)$ is the maximal ideal of $C^*(\phi(T))$.
- (3) Let $\Phi_{C^*(T)}$ and $\Phi_{C^*(\phi(T))}$ be the maximal ideal space of $C^*(T)$ and $C^*(\phi(T))$, respectively. Then $\Phi_{C^*(T)}$ and $\Phi_{C^*(\phi(T))}$ are isometrically isomorphic.

Proposition 2.7 (Cha [7]). We have the following properties.

- (1) $M = \bigcap \{f^{-1}(0) : f \in \Phi_{C^*(T)}\} \cong N = \bigcap \{h^{-1}(0) : h \in \Phi_{C^*(\phi(T))}\}.$
- (2) $C^*(T)/M \cong C^*(\phi(T))/N$.

Related to above propositions, we obtained the following results for w-hyponormal operators.

To show this property, we need the following proposition:

Proposition 2.8. If an operator T is w-hyponormal, then so is $\phi(T)$.

Proof. Since operators in $A(\frac{1}{2},\frac{1}{2})$ is w-hyponormal, we need only to show that

$$(|\phi(T)^*|^{1/2}|\phi(T)||\phi(T)^*|^{1/2})^{1/2} \ge |\phi(T)^*|.$$

It is easily check that $|\phi(T)| = \phi(|T|)$ and ϕ preserves the positive property. Thus we have

$$\begin{aligned} |\phi(T)^*| &= \phi(|T^*|) \\ &\leq \phi((|T^*|^{1/2}|T||T^*|^{1/2})^{1/2}) \\ &= (|\phi(T)^*|^{1/2}|\phi(T)||\phi(T)^*|^{1/2})^{1/2}. \end{aligned}$$

Therefore,

$$(|\phi(T)^*|^{1/2}|\phi(T)||\phi(T)^*|^{1/2})^{1/2} \ge |\phi(T)^*|.$$

Thus, $\phi(T)$ is w-hyponormal.

With the notation of Proposition 2.5, Proposition 2.7 and Lemma 2.4, we have the following:

Theorem 2.9. If T is a w-hyponormal operator with $ker(T) \subset ker(T^*)$, then

$$C^*(T)/M \cong C^*(\phi(T))/N \cong C(\sigma_p(\phi(T))).$$

We need the following proposition in order to give proofs of Theorem 2.11 and Corollary 2.12.

Proposition 2.10 (Conway [9]). If T is an irreducible operator such that T^*T-TT^* is compact, then the commutator ideal M of $C^*(T)$ is $K(\mathcal{H})$, where $K(\mathcal{H})$ is the ideal of all compact operators on \mathcal{H} .

We have the results for irreducible w-hyponormal operators.

Theorem 2.11. If T is an irreducible w-hyponormal operators such that $\ker(T) \subset \ker(T^*)$ and $T^*T - TT^*$ is compact, then

$$\sigma_{ap}(T) = \sigma_e(T) \text{ and } \sigma_p(\phi(T)) = \sigma_e(\phi(T)).$$

Proof. The fact that $\sigma_{ap}(T) = \sigma_e(T)$ follows immediately from Proposition 2.10 and Lemma 2.4. The second assertion is clear from Proposition 2.10 and Proposition 2.5.

It is easy to see that if T is a Fredholm operator on \mathcal{H} , then so is $\phi(T)$ on \mathcal{K} , and so $\sigma_e(\phi(T)) \subset \sigma_e(T)$ for any operator T.

Corollary 2.12. If T is an irreducible w-hyponormal operators such that $\ker(T) \subset \ker(T^*)$ and $T^*T - TT^*$ is compact, then $\sigma_e(T) = \sigma_e(\phi(T))$.

REFERENCES

- 1. A. Aluthge: On p-hyponormal operators for 0 . Integral Equation and Operator Theory 13 (1990), no. 3, 307-315. MR 91a:47025
- 2. A. Aluthge & D. Wang: An operator inequality which implies paranormality, Math. Inequal. Appl. 2 (1999), no. 1, 113-119. MR 99j:47029
- 3. _____: w-hyponormal operators. Integral Equations Operator Theory **36** (2000), no. 1, 1-20. MR **2000k**:47024
- 4. _____: w-hyponormal operators II. Integral Equation Operator Theory 37 (2000), no. 3, 324-331. MR 2001i:47032
- 5. J. Bunce: Characters on singly generated C*-Algebra. Proc. Amer. Math. Soc. 25 (1970), 297-303. MR 41#4258
- 6. H. K. Cha: Spectra of the image under the faithful *-representation of $L(\mathcal{H})$ on K. Bull. Korean Math. Soc. 22 (1985), no. 1, 23-29. MR 86i:47007
- 7. _____: On the essential Spectrum of an irreducible hyponormal operators. Bull. Korean Math. Soc. 24 (1987), no. 2, 159–164. MR 89h:47035
- 8. J. B. Conway: A Course in Functional Analysis, Second edition. Graduate Texts in Mathematics, 96. Springer-Verlag Springer-Velag, New York, 1990. MR 91e:46001
- 9. _____: The Theory of Subnormal Operators, Mathematical Surveys and Monographs, 36. Amer. Math. Soc., Providence, RI, 1991. MR 92h:47026
- M. Enomoto, M. Fujii & K. Tamaki: On Normal Approximate Spectrum. *Proc. Japan. Acad.* 48 (1972), 211–215. MR 47#851
- 11. M. Fujii, D. Jung, S. H. Lee, M. Y. Lee & R. Nakamoto: SomeClass of Operators Related to Paranormal and Log-hyponormal Operators. *Math. Japon.* **51** (2000), no. 3, 395–402. MR **2002a**:47028
- 12. M. Ito & T. Yamazaki: Relation Between Two Inequalities $(B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^r$ and $A^p \ge (A^{\frac{p}{2}}B^rA^{\frac{p}{2}})^{\frac{p}{p+r}}$ and their Applications. Integral Equation Operator Theory 44 (2002), no. 4, 442–450. MR 2003h:47032

- S. G. Lee: The Joint Normal Spectrum, Relative Spectrum and the Closure of Shell. Ph. D. Thesis. Univ. California at Santa Babara, 1972.
- (H. K. CHA) DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, 17 HAENGDANG-DONG, SEONG-DONG-GU, SEOUL 133-791, KOREA *Email address*: hkcha@hanyang.ac.kr
- (J. H. Kim) Department of Mathematics, Hanyang University, 17 Haengdang-dong, Seong-dong-gu, Seoul 133-791, Korea
- (K. I. LEE) DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, 17 HAENGDANG-DONG, SEONG-DONG-GU, SEOUL 133-791, KOREA *Email address*: haesanae@dreamwiz.com