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ESSENTIAL SPECTRA OF w-HYPONORMAL OPERATORS

HyunG Koo CHA, JAE HEE KiMm, AND KwANG IL LEE

ABSTRACT. Let K be the extension Hilbert space of a Hilbert space # and let ¢ be
the faithful *-representation of B(*) on K. In this paper, we show that if T' is an
irreducible w-hyponormal operators such that ker(T) C ker(T*) and T*T — TT"is
compact, then g.(T) = ge(¢(T)).

1. INTRODUCTION

Let H be a complex Hilbert space. The x-algebra of all bounded linear operators
on H is denoted by B(#). For an operator T in B(#), we denote the spectrum,
the point spectrum, the approximate point spectrum and the essential spectrum
by o(T), 0p(T), 0ap(T), and o(T), respectively. A complex number z is a normal
approximate propervalue of T if there exists a sequence {z,} of unit vectors such that
(T - z)zn = 0 and (T — 2)*z, — 0. The set of all normal approximate propervalue
is called the normal approximate spectrum of T and it denote by 0,4 (T).

Aluthge (1] first introduced p-hyponormality for operators; An operator T is
said to be p-hyponormal for p € (0,1] if (T*T)? > (TT*)P. If p = 1, T is called
hyponormal and if p = %, T is called semi-hyponormal. It is well known that a p-
hyponormal operator is a g-hyponormal operator for 0 < ¢ < p by the Léwner-Heinz
theorem.

Let T' = U|T| be the polar decomposition of T, where U is a partial isometry, |T|
is a positive square root of 7T and ker T' = ker |T'| = ker U. Aluthge [1] introduced
the operator T = |T|}/2U|T|'/2, which is called the Aluthge transformation of 7.
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Aluthge & Wang (2] first introduced a new operator that an operator T is said
to be w-hyponormal if |7~’| >|T| > IT*I Evidently, if T is w-hyponormal, then T is
semi-hyponormal.

They proved that if an operator T is p-hyponormal, then it is w-hyponormal and
also show the following results:

Theorem 1.1 (Aluthge & Wang [4]).
(1) An operator T is w-hyponormal if and only if

ITI > (TIT*|TI3)E and [T*| < (T°[2|TIIT*|2)2.
(2) If T is a w-hyponormal operator, then oap(T) — {0} = ona(T) — {0}.

Fujii, Jung, S. H. Lee, M. Y. Lee & Nakamoto {11] introduced a new class A(p, q)
of operators that for p,q > 0, an operator T belongs to A(p,q) if it satisfies an
operator inequality

(IT* |97 PP\ 7*19) 745 > T 2.
Recently, Ito & Yamazaki [12] introdued a new class wA(p, q) of operators that

for p,q > 0, an operator T belongs to wA(p, q) if it satisfies an operator inequalities

(thltIlT'?PlT*]q);i}' > IT*|2q and |T|2p > (lTlplT*lquTlp);%-

In Ito & Yamazaki 12|, they obtained the following results:

Theorem 1.2 (Ito & Yamazaki [12]). For each p > 0 and g > 0, the following

assertions hold:

(1) Class A(p,q) coincides with class wA(p,q).
(2) Class A(%, %) coincides with the class of w-hyponormal operators (i.e., class

wA(3,3)).

An operator T is said to be reducible if it has a nontrivial reducing subspace. If
an operator is not reducible, then it is called irreducible.

Cha [6] constructed an extension K of H by means of all weakly convergent
sequences in H and the Banach Limit, and obtained the faithful *-representation ¢
of B(H) on K.

In this paper, using the faithful x-representation ¢, for an irreducible w-hyponor-
mal operator T' with ker(T) C ker(T*), we investigate the relation between the
essential spectrum of T' and the essential spectrum of ¢(T').



ESSENTIAL SPECTRA OF w-HYPONORMAL OPERATORS 219
2. THE MAIN THEOREM

Let C*(T') be the C*-subalgebra of B(#) generated by a single operator T' and
identity. By a character on a C*-algebra we mean a multiplicative linear functional.
If A is a C*-algebra with identity, then its commutator ideal is the closed ideal
generated by the commutator ab — ba for a,b € A.

Bunce [5] established a kind of the reciprocity among the character of single
generated C*-algebra and the approximate spectra of the generators and he proved
the following theorem:

Theorem 2.1 (Bunce [5]). If T' is a hyponormal operator, then for all A € o4p(T)
there is a character ¢ on the C*-algebra C*(T') such that (T) = A.

Enomoto, Fujii & Tamaki [10] was generalized Bunce’s result as following:

Theorem 2.2 (Enomoto, Fujii & Tamaki [10]). A complex number A € ope(T) if
and only if there is a character ¢ of C*(T') such that (T) = .

Let C*(T; : i € T') be the C*-algebra generated by {T; : ¢ € I'} and the identity
operator, and let Z be the commutator ideal of C*(T; : 7 € T).

S. G. Lee [13] obtained that the quotient algebra C*(T; : ¢ € T")/Z is isometrically
*-isomorphic to C(o,(T; : i € T")), where 0,(T; : i € ') is the joint normal spectrum
of {T; : 1 e T}

By Theorem 1.1 and Theorem 2.2, we have the following result:

Corollary 2.3. Let T be a w-hyponormal operator with ker(T) C ker(T*). Then
A € 04p(T) if and only if there is a character v of C*(T') such that (T) = ).

If ® 4 is the set of all character on A and M is the commutator ideal of A, then
M=N{h10): h e d,} and &4 is the maximal ideal space of A/M. With this
statement, we have A/M = C(® 4) under the Gel'fand transform, a-+M — &, where
a(h) = h(a) for a in A and h in ® 4 (Conway [8, 9]).

Lemma 2.4. If an operator T is w-hyponormal with ker(T') C ker(T™), there is an
isometric x-isomorphism of C*(T)/M onto C(04p(T)), where A+ M is mapped to
the function z.

Proof. Let 7 : @c«(1) — 04p(T’) be defined by 7(¢p) = ¥(T). By Corollary 2.3 this
map is surjective. If ¢(T) = '(T) for ¥,9' € ®cw(r), then ¥ = ¢, since T is
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generator of C*(T'), and 9,9’ are continuous on C*(T'). So 7 is injective. It is also
easy to see that 7 is continuous. Since ®¢+(7) is compact, 7 is a homeomorphism.
Thus the map 7# : C(0gp(T)) — C(®c+ (1)) defined by 7#(f) = for is an isometric
*-isomorphism. We define a map p : C(o4p(T)) — C*(T')/M so that the following
diagram commutes:

C*(T)/M ! C(®c+(1))

\ 7’
C(Ua.p(T))
where the Gel’fand transform v : C*(T)/M — C(®¢+ (7)) is an isometric *-isomorph-

ism. Then p is clearly an isometric *-isomorphism. a

Cha [6] introduced an extension K of H by means of all weakly convergent se-
quences in # and the Banach Limit, and obtained the faithful *-representation ¢ of
B(#H) on K.

In order to show our results, we use the following propositions.

Proposition 2.5 (Cha [6, 7]). There exists a faithful x-representation ¢ of B(H)
on K with the following properties:

() Nl = |IT[-

(2) o(T) = a(¢(T)).

(3) 0ap(T) = 0p(&(T)).

(4) If T is a compact operator on H, then so is ¢(T) on K.

(5) If T is an irreducible operator on H, then so is ¢(T) on K.

Remark. The Proposition 2.5 (5) does not mean a representation of a C*-algebra is

irreducible. It implies the concept of a simple irreducible operators.

Proposition 2.6 (Cha [7]). We have the following properties.

(1) The C*-algebra C*(T) is isometrically x-isomorphic to the C*-algebra C*($(T')).

(2) If M is the mazimal ideal of C*(T'), then $(M) is the mazimal ideal of C*(¢(T)).

(3) Let ®c+(1) and ®c-(4(1)) be the mazimal ideal space of C*(T) and C*(¢(T)),
respectively. Then ®c«(1y and @c»(4(T)) are isometrically isomorphic.

Proposition 2.7 (Cha [7]). We have the following properties.

(1) M=N{f710): f € o)} = N ={h7(0) : h € e (g }-
(2) C*(T)/M = C*(¢(T))/N.
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Related to above propositions, we obtained the following results for w-hyponormal
operators.
To show this property, we need the following proposition:

Proposition 2.8. If an operator T is w-hyponormal, then so is ¢(T).

Proof. Since operators in A(%, %—) is w-hyponormal, we need only to show that

(1$(T) 1 SDNIST) 1) 2 9(T)".
It is easily check that |¢(T)| = ¢(|T'|) and ¢ preserves the positive property. Thus

we have
1¢(T)"| = o(IT"))
< $((IT VATV Y?)
= (I8(T)* 721 ¢(TI(T) | H) 2.
Therefore,
(16 2D M2)"* 2 |$(T)".
Thus, ¢(T') is w-hyponormal. O

With the notation of Proposition 2.5, Proposition 2.7 and Lemma 2.4, we have
the following:

Theorem 2.9. If T is a w-hyponormal operator with ker(T') C ker(T™), then
C*(T)/M = C*($(T))/N = C(ap(4(T))).

We need the following proposition in order to give proofs of Theorem 2.11 and
Corollary 2.12.

Proposition 2.10 (Conway [9]). IfT is an irreducible operator such that T*T —TT*
is compact, then the commutator ideal M of C*(T') is K (H), where K(H) is the ideal
of all compact operators on H.

We have the results for irreducible w-hyponormal operators.

Theorem 2.11. If T is an irreducible w-hyponormal operators such that ker(T) C
ker(T™*) and T*T — TT™*is compact, then

0ap(T) = 0¢(T) and op(¢(T)) = 0e($(T)).
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Proof. The fact that 0,,(T) = 0(T') follows immediately from Proposition 2.10 and
Lemma 2.4. The second assertion is clear from Proposition 2.10 and Proposition
2.5. O

It is easy to see that if T is a Fredholm operator on , then so is ¢(T") on K, and
s0 0.(¢(T')) C 0.(T) for any operator T

Corollary 2.12. If T is an irreducible w-hyponormal operators such that ker(T) C
ker(T*) and T*T — TT* is compact, then 0.(T) = o(¢(T)).
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