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EVALUATIONS OF THE IMPROPER INTEGRALS
[& [sin®™(az)]/(z*)dz AND [°[sin?™*!(az)]/(z*"+!)dz

FeENG QI, Qru-MING Luo, AND BAI-N1 Guo

ABSTRACT. In this article, using the L’Hospital rule, mathematical induction, the
trigonometric power formulae and integration by parts, some integral formulae for
the improper integrals [;°[sin*” (ox)]/(z?")dx and [;°[sin®"*!(az)]/(z*"*!)dz are
established, where m > n are all positive integers and a # 0.

1. INTRODUCTION

The following improper integral is well-known and is synonymous with names of

© sing s

In fact, in 1781, it was first obtained using the residue method by Euler. It can be

Laplace and Dirichlet

found in standard textbooks for undergraduate students, for examples Rudin {12,
pp. 226-227] and Staff Room of Higher Mathematics at Xi’an Jiaotong University
(16, pp. 168-170].

Depending on the partial fraction decomposition

1 1, (1 1
—_— = -1) 2
sint t+;( )(t—mr+t+n7r)’ @)

1=

an elegant calculation of formula (1) is provided in Klambauer [6, pp. 436-437] and
Klambauer [7, pp. 382-384], due to the noted geometrician N. I. Lobatscheuski.
Another polished proof of identity (1) is given in Klambauer [7, pp. 381-382].
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As exercises in She & Liu [13, p. 53, p. 147, and p. 335] and Spiegel [15, p. 495],
using the Laplace transform, the Parseval identities of sine and cosine Fourier trans-

forms and the residue theorem, the following formulae are requested to compute:

© gin?t T sint T © gindt 3
dt = = dt = —,
/0 2 2’ /0 t? 2 /0 t3 dt 8 (3)

In Tan [17, pp. 74-75 and p. 84], using the Mellin transform and by approaches in

theory of Fourier analysis or theory of residues, the following formulae are obtained:

[e o]
d
/ cos(tsc)xz;a—: = I'(z)t™*cos 1;, Re(z) >0, t>0; (4)
0
0
d:
/ sin(ta:):cz?x =I['(2)t™*sin %, Re(z) > -1, t>0; (5)
0
/OO Sinmdz =TI(1 - z)cos L. T (6)
0o I B 2 2T(2)sin =z

Especially, taking ¢ = 1 and z — 0 in (5) or taking z = 1 in (6) produces (1).
The following generalisation of formula (1) can be found in Erdélyi, Magnus,
Oberhettinger & Tricomi [2, 3] and Gradshteyn & Ryzhik [4, p. 458, No. 3.836.5]:

%/Ooo <§i—2£>ncos(bx)dx =n(2" 1n i( 1) ( )(n—b— 2671, (D)

where 0 <b<n,n>1,r= 2 , and [r] is the largest integer contained in r.
In Sofo [14], some general results related to formulae (1) and (7) were obtained.
In Berger [1, p. 663] and Kuang [8, p. 606], the following inequality is given:

o] p 2
/ dtsﬂﬁ, p>2 8)
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Equality is valid only if p = 2.
The integral (1) and other integral formulae stated above are useful and arising in

sint

research of damping vibration and other science or engineering. This was mentioned
in Staff Room of Higher Mathematics at Xi’an Jiaotong University [16, p. 170].
Recently, Luo & Guo [9] and Luo & Qi [10, 11] obtained the following

Theorem A (Luo & Guo [9]). For k € N and a # 0, we have

% /sin(az) 2k+1d sgna S8 o(—1)"(2k — 20+ 1)*CY, | a2k
0 z = 4k(2k)




EVALUATIONS OF THE IMPROPER INTEGRALS 191

©(sin(az)\* | sgnaYig(=1)i(k—0)*1CE 4 7
/0(—3; )dm— T 2 (0)

If taking k =1 in (9), the formula (1) follows.

In this article, using the L’Hospital rule, mathematical induction, trigonometric
power formulae and integration by parts, we will establish integral formulae of the
improper integrals

% s5in?™(az)  sin?™+1 (ag)
——2‘——d.’l3 and T“dd),
0 rén 0 pnt+

where m > n are all positive integers and o # 0. The following theorem holds.

Theorem 1. Let m,n € N, m > n, and a # 0. Then

% sin?™+ (qg)
——7 —dT
0 gt

n.ﬂ-

(=)™ sgna Yo (=1)'(2m - 20+ 1)**CY 1y o2
4m(2n)!

, (1)

o |

gin P T 4m-n(2n — 1)! ' 2’ (12)
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0

As a direct consequence of Theorem 1, the following integral formula holds.

Corollary 1. Let m be a nonnegative integer, then we have

% sin®™+1(qg) @m) =«

It is obvious that Theorem 1 generalizes the formula (1), Theorem A and other
results above.

2. LEMMAS

The following trigonometric power formulae are the basis and key of our proof
for Theorem 1.

Lemma 1. (Group of compilation [5, p. 41 and p. 280] and Weisstein [18]) For
a > 0 and k € N, we have

% sin(ax) I
| == 3, (14)

T
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n2k 1l = o Z k+iC%‘k+l sin((2k — 2i + 1)], (15)
k-t . 1

sin?f ¢ = 22k T Z 1)** 0L, cos2(k — 1)z] + §C§k ) (16)
=0

where C m

The following three combinatorial identities can be regarded as by-products, en-
abling us to employ the L’Hospital rule in the proof of Theorem 1. They can also
be found in Luo & Guo [9].

Lemma 2. For1 <m <k and k € N, we have

k
S (1) (2k - 2+ 1) Cheyy =0, (17)
i=0
k-1 o 1
D (-1)FCh, + §C§k =0. (18)
i=0
For1<f<k-1and2<ke€eN, we have
k-1 . _
D (F1)ik—9)*Cy = 0. (19)
i=0

Proof. By the trigonometric power formula (15), it is easy to see that

k k+i v : ; i 2k+41
- o(=1)fC sin[(2k - 2i + 1)z
i 2=0( =D O sinll 7] _ gk gy S0 s =0, (20)
z—0 x z—0 x
thus
k . .
Z(—1)10§k+1 sin[(2k — 2i + 1)z] = o(z?*) asz — 0, (21)
=0
then, for 0 < 5 < 2k,
k , () ’
(Z(—nic;k +18in[(2k — 26 + 1):;;]) = o(¢®*77) asz — 0, (22)
i=0

therefore, for any natural number 1 < m < k, we have

k (2m-1)
0= lim (Z(-nic;m sin{(2k — 2i + 1).1:])

z—0\ 4
1=0

k
= lim ((—1)'"-1 > (—1)%(2k — 26 + 1)*™1Ch 1 cos((2k — 2 + l)x]) (23)

—0
”’ i=0
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k
= (=1 (-1)H(2k = 2+ 1P 0l
=0
Identity (17) follows.
By the trigonometric power formula (16), it is not difficult to obtain

k—1 k+ivi . 1k s 02k
) im0 (1)"T'CYy cos[2(k — i)z] + 505, oy, sin®z
il—ri% x2k-1 =2 il—rﬂ) z2k-1 0, (24)
hence
k-1 o 1
(=1)**CE, cos[2(k — 3)z] + §C§k =o(z?*1) asz —0, (25)
=0
consequently
k—1 1
1 ki i : k
0= lim ;(—n ‘Cgp cos[2(k — i)z] + 5 C3,
= (26)
k—1 o
=Y (-)FCh + §C§k
1=0

and, for 1 <53 <2k -1,

k—1 ()
(Z(—l)k"'iCék cos[2(k — i)z] + %C§k> =o(z?*=71) asx =0, (27)
i=0

then, for any positive integer £ such that 1 < £ < k — 1, we have

k-1 (29
. v . 1
0 = lim (Z(-n“ Cy, cos[2(k — 1)z] + 50&)

z—0 \ 4
=0

z—0

k
= lim ((—1)5 > (—1)}(2k - 2i + 1)%CY .y cos[(2k — 2i + 1):c]> (28)

=0
k - .
= (=1)° Y (-1)(2k — 20 + 1)*" " Chyy.
1=0
Identities (18) and (19) follow. The proof is complete. O

3. ProOOF OF THEOREM 1

Let t = az, then, by straightforward computation, we have

OO 1T QO 1T
/ El—I-l—g—c—w:—)d:z =a*! sgna/ S0t (29)
0 z® o
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From Lemma 1 and Lemma 2, using the L’Hospital rule and integration by parts
yields

2m+1
sin
/ x2n+1 d
% S o(—=1)™+CE L sin[(2m — 2i + 1):v]
22m p2n+l

1)2J '(2n — j)!

Zm —1)™H(2m — 2 + 1)71CY,, , sin[(2m — 2 + 1)z + Y27 |7
p2n—j+1
0
o S (=)™ (2m — 20 + 1)7CE, Ly sin[(2m — 2i + 1)z + & ] p
pin—j+1 T
_ 1)" o S o(=1)™ i (2m — 2i + 1)2°C4, . sin[(2m — 2 + 1):1:]
- 22m(2n)! /o z
(-1ymtn & on ® sin[(2m — 27 + 1)z]
= Samiam @n)l 2 Z —1){(2m - 2i + 1) C},. 14 A " dzx
—pm*r Zz-— '2m-2i+1)"Ch, 1 7w

22m(2n)! 2’
where 1 < j < 2n. Combining with (29), the formula (11) follows.
By formula (16), using the L'Hospital rule, from Lemma 2, integration by parts

gives us

® gin?™ g
0 X

1 /°° SESH=1)RHCE | cos[2(m — i)a] + %Cg}nd
= 22m 1 z

.’1:2"'

2n

1 1 oo [ meti v ; 1 ym L
=—2_27n—-_1'ﬂ:—1/0 > (-1 Chm cos[2(m ~ i)z] + 5 O, d(zﬁj)

1=0
B 1 mL(_1)ymHCE cos[2(m — i)a] + 1op, |
— . 92n~-1 2n—1
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/ £2n—1 dx

_ 1 o' (=)™ [2(m — ) Chy sinf2(m = i)a]
- /0 d

- (2m —1) - 22n~1 z2n—1
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_ @n—j-2) [T (-1)™2(m = )P Ch, sin[2(m - i)a] + Y5) |7
T 22m-1(9p — 1)] g2n—j-1 .
[ Srgt (-1)™H(m = )P, sin[2(m — i)a] + & dx}
0 z2n—j—1

dr

I G /°° 2o (=)™ [2(m ~ )1 O3, sin[2(m — i)a]
22m=1(2n — 1)1 J, z

n i - . [ sin[2(m — 1)z
I
_ Gy R (i m — )G

22(m=n)(2n — 1)!

T
2)

where 1 < j < 2(n — 1). On combining with (29), the second formula (12) follows.

!\'}b—‘

10.

11,

The proof of Theorem 1 is thus complete.
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