ANNIHILATOR CONDITIONS ON RINGS AND NEAR-RINGS

YONG UK CHO

ABSTRACT. In this paper, we initiate the study of some annihilator conditions on polynomials which were used by Kaplansky [Rings of operators. W. A. Benjamin, Inc., New York, 1968] to abstract the algebra of bounded linear operators on a Hilbert spaces with Baer condition. On the other hand, p.p.-rings were introduced by Hattori [A foundation of torsion theory for modules over general rings. Nagoya Math. J. 17 (1960) 147–158] to study the torsion theory. The purpose of this paper is to introduce the near-rings with Baer condition and near-rings with p.p. condition which are somewhat different from ring case, and to extend a results of Armendariz [A note on extensions of Baer and P.P.-rings. J. Austral. Math. Soc. 18 (1974), 470–473] and Jøndrup [p.p. rings and finitely generated flat ideals. Proc. Amer. Math. Soc. 28 (1971) 431–435].

1. Introduction

Kaplansky [5] introduced the Baer rings as rings in which every left (right) annihilator ideal is generated by an idempotent. On the other hand, Hattori [3] introduced the left p.p.-rings as rings in which any principal left ideal is projective. In this paper we introduce Baer near-rings and p.p.-near-rings and study some of their properties and give some examples. Let G be an additively written (but not necessarily abelian) group with zero 0 and $M_0(G) = \{f : G \to G \mid f(0) = 0\}$ the near-ring of all zero fixing mappings on G. We show that $M_0(G)$ is a Baer near-ring. As a corollary, we show that every zero-symmetric near-ring can be embedded into a Baer near-ring. Let R be a commutative ring with identity. It is well known that R is a Baer (resp. p.p.-) ring if and only if the polynomial ring R[x] is a Baer (resp. p.p.-) ring (see e.g., Armendariz [1] and Jøndrup [4]). Corresponding to this result, we will prove that the zero-symmetric part of R[x] is a Baer (resp. p.p.-) near-ring if and only if

Received by the editors April 28, 2003.

²⁰⁰⁰ Mathematics Subject Classification. 16Y30.

Key words and phrases. Baer rings, p.p.-rings, Baer near-rings, p.p.-near-rings.

R is a Baer (resp. p.p.-) ring. Finally we study the structure of a zero-symmetric reduced p. p.-near-ring with identity.

2. Baer near-rings and p.p.-near-rings

A (right) near-ring is a set N with two binary operations + and \cdot such that (N, +) is a not necessarily abelian group with identity $0, (N, \cdot)$ is a semigroup and (x + y)z = xz + yz for all $x, y, z \in N$. Some basic definitions and concepts in near-ring theory can be found in Meldrum [6] and Pilz [7].

For a subset S of a near-ring N, the set $\{n \in |NnS = 0\}$ is called the *annihilator* of S in N which is denoted by $Ann_N(S) = Ann(S)$.

A near-ring N is called a Baer near-ring if, for any subset S of N, Ann(S) = Ann(e) for some idempotent $e \in N$. The following proposition is obvious.

Proposition 1. Let N_i $(i \in I)$ be a family of near-rings. Then the direct product $\prod_{i \in I} N_i$ is a Bear near-ring if and only if N_i is a Bear near-ring for each $i \in I$.

A near-ring N is said to be *integral* if N has no nonzero divisors of zero (cf. Pilz [7, 1.14, p. 11]).

Example 1.

- (1) Every integral near-ring with identity is a Baer near-ring.
- (2) Every constant near-ring is a Baer near-ring.
- (3) A direct product of integral near-rings with identity is a Baer near-ring.

Let G be an additively written (but not necessarily abelian) group with zero 0 and $M_0(G) = \{f : G \to G \mid f(0) = 0\}$ the near-ring of all zero fixing mappings on G (see Pilz [7, 1.4, p. 8]). Beidleman [2, Theorem 1] proved that $M_0(G)$ is a regular near-ring. We shall prove that $M_0(G)$ is Baer.

Theorem 1. The near-ring $M_0(G)$ is a Baer near-ring.

Proof. Let S be a subset of $M_0(G)$ and let $H = \{s(g) \mid s \in S, g \in G\}$. Let e be a mapping on G such that if $x \in H$, then e(x) = x and e(y) = 0 for any $y \in G - H$. Then e is an idempotent of $M_0(G)$ and Ann(S) = Ann(e). This implies that $M_0(G)$ is a Baer near-ring.

Corollary 1. Every zero-symmetric near-ring can be embedded into a Baer near-ring.

Proof. By Pilz [7, 1.102, p. 11], every zero-symmetric near-ring can be embedded into a zero-symmetric near-ring with identity. Let N be a zero-symmetric near-ring with identity. By Theorem 1, $M_0(N)$ is a Bear near-ring. For any $r \in N$, the mapping $f_r: t \in N \to rt \in N$ is an element of $M_0(N)$. Since N contains an identity, the mapping $f: N \to M_0(N); r \mapsto f_r$ is a near-ring monomorphism.

An associative ring R called a left p.p.-ring if every principal left ideal of R is projective. This is equivalent to the condition that, for any $a \in R$, Ann(a) = Ann(e) for some idempotent $e \in R$. A right p.p.-ring is defined in a symmetric way.

Now we call a near-ring N a p.p.-near-ring if, for any $a \in N$, Ann(a) = Ann(e) for some idempotent $e \in N$. Clearly a Baer near-ring is a p.p.-near-ring.

Following Beidleman [2], we call a near-ring N regular if, for any $x \in N$, here exists $y \in N$ such that xyx = x.

Example 2. Every regular near-ring is a p.p.-near-ring. In fact, for any $x \in N$, there exists $y \in N$ such that xyx = x. Then xy is an idempotent and Ann(x) = Ann(xy).

Let R be a commutative ring with identity and let R[x] denote the set of all polynomials in one indeterminate over R. Under usual addition + and substitution \circ of polynomials, $(R[x], +, \circ)$ becomes a near-ring. Following Pilz [7, 7.78, p. 221], $R_0[x]$ denotes the zero symmetric part of R[x], that is

$$R_0[x] = \Big\{ \sum_{i=1}^n a_i x^i \mid a_i \in R, n \ge 1 \Big\}.$$

The following is a near-ring theoritic modification of Jøndrup [4, Theorem 2.1].

Theorem 2. Let R be a commutative ring with identity. Then the following conditions are equivalent:

- 1) $R_0[x]$ is a p.p.-near-ring.
- 2) R is a p.p.-ring.

Proof.

1) \Rightarrow 2). First we claim that R is reduced. Suppose that $a \in R$ with $a^2 = 0$. By hypothesis, there exists an idempotent $f \in R_0[x]$ such that Ann(ax) = Ann(f). Let $f = a_1x + a_2x^2 + \cdots + a_nx^n$ with $a_i \in R$. Since f is an idempotent, we have

 $a_1^2 = a_1$. Since $ax \in \text{Ann}(ax)$, $ax \circ f = af = 0$. In particular, $aa_1 = 0$. Since $x - f \in \text{Ann}(f)$, $0 = (x - f) \circ ax = ax^2 - f(ax)$. Hence $ax^2 = a_1ax = 0$, that is a = 0. This proves that R is reduced. Since R is reduced, the set of idempotents of $R_0[x]$ is just $\{ex \mid e^2 = e \in R\}$. Now let r be an arbitrary element of R. By hypothesis, there exists an idempotent $e \in R$ such that Ann(rx) = Ann(ex). Clearly this implies that $\{s \in R \mid sr = 0\} = R(1 - e)$. Hence R is a p.p.-ring.

2) \Rightarrow 1). Let $f = a_1x + \cdots + a_nx^n \in R_0[x]$ and $g = b_1x + \cdots + b_mx^m \in R_0[x]$. First we claim that $f \circ g = 0$ if and only if $a_ib_j = 0$ for all i, j. It suffices to prove the 'only if' part. Let P be an arbitrary prime ideal of R and let \bar{f} and \bar{g} denote the image of f and g in (R/P)[x] respectively. Since R/P is an integral domain and since $\bar{f} \circ \bar{g} = 0$, we can easily see that either $\bar{f} = 0$ or $\bar{g} = 0$ holds. Hence $a_ib_j \in P$ for all i, j. Since P is an arbitrary prime ideal, this implies that $a_ib_j \in Rad(R)$, where Rad(R) denote the prime radical of R. Since R is a commutative p.p.-ring, R is reduced and hence Rad(R) = 0. This proves our claim. Therefore $a_1, \ldots, a_n \in Ann_R(b_1, \ldots, b_m)$. Since R is a p.p.-ring, for each i, there exists an idempotent $e_i \in R$ such that $Ann(b_i) = Ann(e_i)$. If n = 2, then $f = e_1 + e_2 - e_1e_2$ is an idempotent and $Ann_R(b_1, b_2) = Ann(f)$. Using induction on n, we can find an idempotent e of R such that $Ann_R(b_1, \ldots, b_m) = Ann(e)$. Then ex is an idempotent of $R_0[x]$ and Ann(g) = Ann(ex). Therefore $R_0[x]$ is a p.p.-near-ring.

The next theorem gives more examples of Baer near-rings.

Theorem 3. Let R be a commutative ring with identity. Then the following conditions are equivalent:

- 1) $R_0[x]$ is a Baer near-ring.
- 2) R is a Baer ring.

Proof.

- 1) \Rightarrow 2). Let T be a subset of R and consider the suset $S = \{tx \mid t \in T\}$ of $R_0[x]$. As saw in the proof of 1) \Rightarrow 2) of Theorem 2, the set of idempotents of $R_0[x]$ is just $\{ex \mid e^2 = e \in R\}$. Since $R_0[x]$ is Baer, $\operatorname{Ann}(S) = \operatorname{Ann}(ex)$ for some idempotent $e \in R$. Then we can easily see that $\operatorname{Ann}_R(T) = \operatorname{Ann}_R(e)$. Hence R is a Baer ring.
- 2) \Rightarrow 1). Let S be a subset of $R_0[x]$ and consider the set T of all coefficients of $g(x) \in S$. Let $f = a_1x + \cdots + a_nx^n \in \text{Ann}(S)$. As saw in the proof of 2) \Rightarrow 1) of Theorem 2, $a_i \in \text{Ann}_R(T)$ for all i. Since R is a Baer ring, there exists an idempotent

e such that $\operatorname{Ann}_R(T) = \operatorname{Ann}_R(e)$. Now we can easily see that $\operatorname{Ann}(S) = \operatorname{Ann}(ex)$. This proves that $R_0[x]$ is a Baer near-ring.

Corollary 2. Let R be a commutative ring with identity. Then the following conditions are equivalent:

- 1) R is a von Neumann regular ring.
- 2) $(R/I)_0[x]$ is a p.p.-near-ring for all ideals I of R.

Proof.

- 1) \Rightarrow 2). If R is regular, then R/I is regular for every ideal I of R, so that R/I is a p.p.-ring. Hence this follows from Theorem 1.
- 2) \Rightarrow 1). As saw in the proof of 1) \Rightarrow 2) of Theorem 2, R/I is reduced for every ideal I of R. Let $a \in R$ and consider the ideal Ra^2 of R. Since R/Ra^2 is reduced and since $a + Ra^2 \in R/Ra^2$ is nilpotent, we have $a \in Ra^2$. This implies that R is von Neumann regular.

Let R be an associative ring with identity and let M be a unital left R-module. If we define a multiplication on the additive group $R \oplus M$ by $(a, b) \circ (c, d) = (ac, ad + b)$ for $(a, b), (c, d) \in R \oplus M, R \oplus M$ becomes a near-ring with identity (1, 0).

Theorem 4. Let R be an associative ring with identity and let M be a unital left R-module. Then the following conditions are equivalent:

- 1) $R \oplus M$ is a p.p.-near-ring.
- 2) R is a left p.p.-ring.

Proof.

2) \Rightarrow 1). We can easily see that, for $(c,d) \in R \oplus M$,

$$Ann(c,d) = \{(a,-ad) \mid a \in Ann(s)\}.$$

Since R is a left p.p.-ring, there is an idempotent $e \in R$ such that $\operatorname{Ann}_R(c) = \operatorname{Ann}(e)$. Then (e, (1-e)d) is an idempotent of $R \oplus M$ and $\operatorname{Ann}(c, d) = \operatorname{Ann}(e, (1-e)d)$.

1) \Rightarrow 2). We first note that the set of all idempotents of $R \oplus M$ is equal to $\{(e,(1-e)x) \mid e=e^2 \in R, x \in M\}$. Hence, for any $c \in R$, there exists an idempotent $e \in R$ and an $x \in M$ such that $\operatorname{Ann}(c,0) = \operatorname{Ann}(e,(1-e)x)$. By the way, $\operatorname{Ann}(c,0) = \{(a,0) \mid a \in \operatorname{Ann}(c)\}$. On the other hand, $(1-e,-(1-e)x) \in \operatorname{Ann}(e,(1-e)x)$. Hence (1-e)x=0, and so $\operatorname{Ann}(c,0) = \operatorname{Ann}(e,0)$. This implies $\operatorname{Ann}(c) = \operatorname{Ann}(e)$. Therefore R is a left p.p.-ring.

A near-ring with no non-zero nilpotent elements is said to be *reduced*. For the rest of this paper, we shall study the structure of zero-symmetric reduced p.p.-near-rings with identity.

Proposition 2. Let N be a zero-symmetric reduced p.p.-near-ring with identity. Then, for any finitely many elements $a_1, \ldots, a_n \in N$, there exists an idempotent $e \in N$ such that $Ann(a_1, \ldots, a_n) = Ann(e)$.

Proof. Since N is a p.p.-near-ring, there exist idempotents $e_1, \ldots, e_n \in N$ such that $\operatorname{Ann}(a_i) = \operatorname{Ann}(e_i)$ for each i. By Ramakotaiah & Sambasiva Rao [8, Lemma 0.2] (or Pilz [7, Proposition 9.43(b), p. 304]), all idempotents of N is central. Then, by the same method as in the proof of $2 \to 1$ of Theorem 2, we can find an idempotent $e \in N$ such that $\operatorname{Ann}(a_1, \ldots a_n) = \operatorname{Ann}(e)$.

Proposition 3. Let N be a zero-symmetric reduced p.p.-near-ring with identity. If N has no infinitely many nonzero orthogonal idempotents, then N is a direct sum of finitely many integral near-rings.

Proof. Let Ann(a) be a minimal element in $\{Ann(t) \neq 0 \mid t \in N\}$. By hypothesis, there exists an idempotent $e_1 \in N$ such that $Ann(a) = Ann(e_1)$. We claim that $N(1 - e_1)$ is an integral near-ring. Let $b, c \in N(1 - e_1)$ such that bc = 0 and $c \neq 0$. Then $Ann(c + e_1) \subseteq Ann(e_1)$. By minimality of $Ann(e_1)$, we conclude that $Ann(c + e_1) = 0$. Clearly $b \in Ann(c + e_1)$, whence b = 0. This proves our claim.

Next we choose a minimal element $\operatorname{Ann}(e_2)$ with $e_2 = e_2^2$ in $\{\operatorname{Ann}(t) \neq 0 \mid t \in Ne_1\}$. Then we can also show that $N(e_1 - e_2)$ is an integral near-ring. Continuing this process, we obtain othogonal idempotents $e_0 = 1, e_1, e_2, \ldots$ of N such that $N(e_i - e_{i+1})$ is integral near-ring for each $i = 0, 1, \ldots$ Since

$$1 - e_1, e_1 - e_2, \ldots, e_{n-1} - e_n, \ldots$$

are orthogonal idempotents, by hypothesis there exists a natural number n such that $e_n = 0$. Then $N = N(1 - e_1) \oplus \cdots \oplus N(e_{n-2} - e_{n-1}) \oplus Ne_{n-1}$ and $N(1 - e_1), \ldots, N(e_{n-2} - e_{n-1}), Ne_{n-1}$ are all integral near-rings.

Proposition 4. Let N be a zero-symmetric reduced p.p.-near-ring with identity. Then, for any $a \in N$, there exists a non zero-divisor $d \in N$ and an idempotent $e \in N$ such that a = ed.

Proof. By hypothesis, there exists an idempotent $e \in N$ such that Ann(a) = Ann(e). Since every idempotent of N is central, we have a = ea = e(a + (1 - e)). By

Ramakotaiah & Sambasiva Rao [8, Lemma 0.1] xy = 0, whence $x, y \in N$ implies yx = 0. Using this property we can easily see that a+(1-e) is a non zero-divisor. \square

ACKNOWLEDGMENTS

The author gratefully acknowledges the kind hospitality he enjoyed at Ohio University.

REFERENCES

- 1. Efraim P. Armendariz: A note on extensions of Baer and P.P.-rings. J. Austral. Math. Soc. 18 (1974), 470-473. MR 51#3224
- 2. James C. Beidleman: A note on regular near-rings. J. Indian Math. Soc. (N.S.) 33 (1969), 207–209. MR 42#6052
- 3. Akira Hattori: A foundation of torsion theory for modules over general rings. *Nagoya Math. J.* **17** (1960) 147–158. MR **25**#1194
- Søren Jøndrup: p.p. rings and finitely generated flat ideals. Proc. Amer. Math. Soc. 28 (1971) 431-435. MR 43#3294
- 5. Irving Kaplansky: Rings of operators. W. A. Benjamin, Inc., New York, 1968. MR 39#6092
- 6. J. D. P. Meldrum: Near-rings and their links with groups, Research Notes in Mathematics, 134. Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 88a:16068
- Günter Pilz: Near-rings, The theory and its applications., Second edition, North-Holland Mathematics Studies, 23. North-Holland Publishing Co., Amsterdam, 1983. MR 85h:16046
- 8. D. Ramakotaiah & V. Sambasiva Rao: Reduced near-rings. In: G. Betsch (Ed.), Near-rings and near-fields (Tubingen, 1985), North-Holland Math. Stud., 137 (pp. 233–243). North-Holland, Amsterdam, 1987. MR 88f:16047

DEPARTMENT OF MATHEMATICS, SILLA UNIVERSITY, 1-1 SAN, GWAEBEOP-DONG, SASANG-GU, BUSAN 617-736, KOREA

Email address: yucho@silla.ac.kr