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ANNIHILATOR CONDITIONS ON RINGS AND NEAR-RINGS

Yong Uk CHO

ABSTRACT. In this paper, we initiate the study of some annihilator conditions on
polynomials which were used by Kaplansky [Rings of operators. W. A. Benjamin,
Inc., New York, 1968] to abstract the algebra of bounded linear operators on a.
Hilbert spaces with Baer condition. On the other hand, p.p.-rings were introduced
by Hattori [A foundation of torsion theory for modules over general rings. Nagoya
Math. J. 17 (1960) 147-158] to study the torsion theory. The purpose of this paper
is to introduce the near-rings with Baer condition and near-rings with p.p. condition
which are somewhat different from ring case, and to extend a results of Armendariz
[A note on extensions of Baer and P.P.-rings. J. Austral. Math. Soc. 18 (1974),

470-473] and Jgndrup [p.p. rings and finitely generated flat ideals. Proc. Amer.
Math. Soc. 28 (1971) 431-435}.

1. INTRODUCTION

Kaplansky [5] introduced the Baer rings as rings in which every left (right) annihi-
lator ideal is generated by an idempotent. On the other hand, Hattori [3] introduced
the left p.p.-rings as rings in which any principal left ideal is projective. In this paper
we introduce Baer near-rings and p.p.-near-rings and study some of their properties
and give some examples. Let G be an additively written (but not necessarily abelian)
group with zero 0 and My(G) = {f : G — G | f(0) = 0} the near-ring of all zero
fixing mappings on G. We show that My(G) is a Baer near-ring. As a corollary, we
show that every zero-symmetric near-ring can be embedded into a Baer near-ring.
Let R be a commutative ring with identity. It is well known that R is a Baer (resp.
p.p--) ring if and only if the polynomial ring R[z] is a Baer (resp. p.p.-) ring (see
e. 9., Armendariz [1] and Jgndrup [4]). Corresponding to this result, we will prove
that the zero-symmetric part of R[z] is a Baer (resp. p.p.-) near-ring if and only if
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R is a Baer (resp. p.p--) ring. Finally we study the structure of a zero-symmetric
reduced p. p.-near-ring with identity.

2. BAER NEAR-RINGS AND P.P.-NEAR-RINGS

A (right) near-ring is a set N with two binary operations + and - such that
(N, +) is a not necessarily abelian group with identity 0, (N, -) is a semigroup and
(z +y)z = zz + yz for all z,y,z € N. Some basic definitions and concepts in
near-ring theory can be found in Meldrum [6] and Pilz [7].

For a subset S of a near-ring N, the set {n € | NnS = 0} is called the annihilator
of S in N which is denoted by Anny(S) = Ann(S).

A near-ring N is called a Baer near-ring if, for any subset S of N, Ann(S) =
Ann(e) for some idempotent e € N. The following proposition is obvious.

Proposition 1. Let N; (i € I) be a family of near-rings. Then the direct product
[Lic; Ni is a Bear near-ring if and only if N; is a Bear near-ring for each i € I.

A near-ring N is said to be integral if N has no nonzero divisors of zero (cf. Pilz

(7, 1.14, p. 11]).

Ezample 1.

(1) Every integral near-ring with identity is a Baer near-ring.

(2) Every constant near-ring is a Baer near-ring.

(3) A direct product of integral near-rings with identity is a Baer near-ring.

Let G be an additively written (but not necessarily abelian) group with zero 0
and My(G) = {f : G — G | f(0) = 0} the near-ring of all zero fixing mappings on
G (see Pilz [7, 1.4, p. 8]). Beidleman (2, Theorem 1] proved that My(G) is a regular
near-ring. We shall prove that My(G) is Baer.

Theorem 1. The near-ring Mo(G) is a Baer near-ring.

Proof. Let S be a subset of My(G) and let H = {s(g9) | s € S, g € G}. Let e be a
mapping on G such that if z € H, then e(z) = z and e(y) =0 for any y € G — H.
Then e is an idempotent of My(G) and Ann(S) = Ann(e). This implies that My(G)
is a Baer near-ring. O



ANNIHILATOR CONDITIONS ON RINGS AND NEAR-RINGS 179

Corollary 1. Every zero-symmetric near-ring can be embedded into a Baer near-
ring.

Proof. By Pilz [7, 1.102, p. 11], every zero-symmetric near-ring can be embedded
into a zero-symmetric near-ring with identity. Let N be a zero-symmetric near-
ring with identity. By Theorem 1, My(N) is a Bear near-ring. For any r € N, the
mapping f, :t € N — rt € N is an element of My(N). Since N contains an identity,
the mapping f : N — My(N);r — f, is a near-ring monomorphism. O

An associative ring R called a left p.p.-ring if every principal left ideal of R is
projective. This is equivalent to the condition that, for any a € R, Ann(a) = Ann(e)
for some idempotent e € R. A right p.p.-ring is defined in a symmetric way.

Now we call a near-ring N a p.p.-near-ring if, for any a € N, Ann(a) = Ann(e)
for some idempotent e € N. Clearly a Baer near-ring is a p.p.-near-ring.

Following Beidleman (2], we call a near-ring N regular if, for any z € N, here
exists y € N such that zyz = x.

Ezxample 2. Every regular near-ring is a p.p.-near-ring. In fact, for any z € N, there
exists y € N such that zyz = z. Then zy is an idempotent and Ann(z) = Ann(zy).

Let R be a commutative ring with identity and let R[z] denote the set of all
polynomials in one indeterminate over R. Under usual addition + and substitution
o of polynomials, (R[z],+,0) becomes a near-ring. Following Pilz [7, 7.78, p. 221],
Ry[z] denotes the zero symmetric part of R[z], that is

n
Rplz] = {Zaiwi | a; € R,n > 1}.
i=1
The following is a near-ring theoritic modification of Jendrup [4, Theorem 2.1].

Theorem 2. Let R be a commutative ring with identity. Then the following condi-
tions are eguivalent:

1) Rplz] is a p.p.-near-ring.

2) R is a p.p.-ring.

Proof.

1) = 2). First we claim that R is reduced. Suppose that a € R with a? = 0.
By hypothesis, there exists an idempotent f € Ry[z] such that Ann(az) = Ann(f).
Let f = a1 + @222 + - - + a,z™ with a; € R. Since f is an idempotent, we have
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a? = ay. Since ax € Ann(az), azo f = af = 0. In particular, aa; = 0. Since z—~ f €
Ann(f), 0 = (z — f) oaz = ax? — f(az). Hence az® = ajaz = 0, that is @ = 0. This
proves that R is reduced. Since R is reduced, the set of idempotents of Ry[z] is just
{ex | €2 = e € R}. Now let r be an arbitrary element of R. By hypothesis, there
exists an idempotent e € R such that Ann(rz) = Ann(ez). Clearly this implies that
{s€ R| sr =0} = R(1 —¢). Hence R is a p.p.-ring.

2) = 1). Let f =a1x+ -+ anz™ € Rolzr] and g = bjz + - - - + bpz™ € Rp[z].
First we claim that f o g = 0 if and only if a;b; = 0 for all ¢, j. It suffices to prove
the ‘only if’ part. Let P be an arbitrary prime ideal of R and let f and § denote
the image of f and g in (R/P)|x] respectively. Since R/P is an integral domain
and since f o g = 0, we can easily see that either f = 0 or § = 0 holds. Hence
asb; € P for all 4, j. Since P is an arbitrary prime ideal, this implies that a;b; €
Rad(R), where Rad(R) denote the prime radical of R. Since R is a commutative
p.p-ring, R is reduced and hence Rad(R) = 0. This proves our claim. Therefore
a,...,a, € Anng(by,...,by). Since R is a p.p.-ring, for each 7, there exists an
idempotent e; € R such that Ann(b;) = Ann(e;). If n = 2, then f =e; +e2 — e1e2
is an idempotent and Anng(by, b2) = Ann(f). Using induction on 7, we can find an
idempotent e of R such that Anng(bi,...,bn) = Ann(e). Then ez is an idempotent
of Rp[z] and Ann(g) = Ann(ez). Therefore Ry|z] is a p.p.-near-ring. O

The next theorem gives more examples of Baer near-rings.

Theorem 3. Let R be a commutative ring with identity. Then the following condi-
tions are equivalent:

1) Ry[z] is a Baer near-ring.
2) R is a Baer ring.

Proof.

1) = 2). Let T be a subset of R and consider the suset S = {tz |t € T} of Ry|z].
As saw in the proof of 1) => 2) of Theorem 2, the set of idempotents of Ry[z] is just
{exz | €2 = e € R}. Since Ry[z] is Baer, Ann(S) = Ann(ex) for some idempotent
e € R. Then we can easily see that Anng(7T") = Anng(e). Hence R is a Baer ring.

2) = 1). Let S be a subset of Ry[z] and consider the set T" of all coefficients of
g(z) € S. Let f = a1z + - + a,z™ € Ann(S). As saw in the proof of 2) = 1) of
Theorem 2, a; € Anng(T) for all i. Since R is a Baer ring, there exists an idempotent
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e such that Anng(7) = Anng(e). Now we can easily see that Ann(S) = Ann(ex).
This proves that Rp[z] is a Baer near-ring. O

Corollary 2. Let R be a commutative ring with identity. Then the following con-
ditions are equivalent:

1) R is a von Neumann regular ring.
2) (R/1)o[z] is a p.p.-near-ring for all ideals I of R.

Proof.

1) = 2). If R is regular, then R/I is regular for every ideal I of R, so that R/I
is a p.p.-ring. Hence this follows from Theorem 1.

2) = 1). As saw in the proof of 1) = 2) of Theorem 2, R/I is reduced for every
ideal I of R. Let a € R and consider the ideal Ra? of R. Since R/Ra? is reduced
and since a + Ra? € R/Ra? is nilpotent, we have a € Ra?. This implies that R is
von Neumann regular. |

Let R be an associative ring with identity and let M be a unital left R-module. If
we define a multiplication on the additive group R® M by (a,b)o(c,d) = (ac,ad+b)
for (a,b), (c,d) € R® M, R® M becomes a near-ring with identity (1,0).

Theorem 4. Let R be an associative ring with identity and let M be a unital left
R-module. Then the following conditions are equivalent:

1) R® M is a p.p.-near-ring.

2) R is a left p.p.-ring.

Proof.
2) = 1). We can easily see that, for (¢,d) € R& M,

Ann(c,d) = {(a, —ad) | a € Ann(s)}.

Since R is a left p.p.-ring, there is an idempotent e € R such that Anng(c) = Ann(e).
Then (e, (1 — e)d) is an idempotent of R ® M and Ann(c,d) = Ann(e, (1 — e)d).

1) = 2). We first note that the set of all idempotents of R & M is equal to
{(e,(1 —e)z) | e = €* € R, z € M}. Hence, for any ¢ € R, there exists an
idempotent e € R and an z € M such that Ann(c,0) = Ann(e, (1 — e)z). By the
way, Ann(c,0) = {(a,0) | @ € Ann(c)}. On the other hand, (1 —e,—(1 —e)z) €
Ann(e, (1 — e)x). Hence (1 — e)x = 0, and so Ann(c,0) = Ann(e,0). This implies
Ann(c) = Ann(e). Therefore R is a left p.p.-ring. O
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A near-ring with no non-zero nilpotent elements is said to be reduced. For the rest
of this paper, we shall study the structure of zero-symmetric reduced p.p.-near-rings
with identity.

Proposition 2. Let N be a zero-symmetric reduced p.p.-near-ring with identity.
Then, for any finitely many elements ay,...,a, € N, there exists an idempotent
e € N such that Ann(ay,...,a,) = Ann(e).

Proof. Since N is a p.p.-near-ring, there exist idempotents e, ..., e, € N such that
Ann(a;) = Ann(e;) for each i. By Ramakotaiah & Sambasiva Rao (8, Lemma 0.2]
(or Pilz [7, Proposition 9.43(b), p. 304]), all idempotents of N is central. Then, by
the same method as in the proof of 2) = 1) of Theorem 2, we can find an idempotent
e € N such that Ann(ay,...a,) = Ann(e). O

Proposition 3. Let N be a zero-symmetric reduced p.p.-near-ring with identity. If
N has no infinitely many nonzero orthogonal idempotents, then N is a direct sum
of finitely many integral near-rings.

Proof. Let Ann(a) be a minimal element in {Ann(¢) # 0 | ¢ € N}. By hypothesis,
there exists an idempotent e; € N such that Ann(a) = Ann(e;). We claim that
N(1 — e1) is an integral near-ring. Let b, ¢ € N(1 — e1) such that bc = 0 and
¢ # 0. Then Ann{c+ e;) € Ann(e;). By minimality of Ann(e;), we conclude that
Ann(c+e;) = 0. Clearly b € Ann(c + e1), whence b = 0. This proves our claim.
Next we choose a minimal element Ann(ep) with ez = €2 in {Ann(t) #0 | t €
Ne;}. Then we can also show that N(e; — e2) is an integral near-ring. Continuing

this process, we obtain othogonal idempotents ey = 1,e1,e2,... of N such that
N(e; — e;+1) is integral near-ring for each ¢ = 0,1,.... Since
1—61,61 —€2,...,€p-1 —€Eny...

are orthogonal idempotents, by hypothesis there exists a natural number n such
that e, = 0. Then N = N(1 —e1) ® -+ ® N(ep—2 — €n-1) ® Ney—1 and N(1 —
e1),---,N(en—2 — en—1), Nen_1 are all integral near-rings. O

Proposition 4. Let N be a zero-symmetric reduced p.p.-near-ring with identity.
Then, for any a € N, there exists a non zero-divisor d € N and an idempotent
e € N such that a = ed.

Proof. By hypothesis, there exists an idempotent e € N such that Ann(a) = Ann(e).
Since every idempotent of N is central, we have a = ea = e(a + (1 — ¢)). By
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Ramakotaiah & Sambasiva Rao (8, Lemma 0.1] zy = 0, whence z,y € N implies
yz = 0. Using this property we can easily see that a+(1—e) is a non zero-divisor. 0O
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