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TIME DISCRETIZATION WITH SPATIAL COLLOCATION
METHOD FOR A PARABOLIC INTEGRO-DIFFERENTIAL
EQUATION WITH A WEAKLY SINGULAR KERNEL

CHANG HO KiM

ABSTRACT. We analyze the spectral collocation approximation for a parabolic par-
tial integrodifferential equations(PIDE) with a weakly singular kernel. The space
discretization is based on the spectral collocation method and the time discretization
is based on Crank-Nicolson scheme with a graded mesh. We obtain the stability
and second order convergence result for fully discrete scheme.

1. INTRODUCTION

Let Q be a rectangular domain in R? with boundary 89 ( typically Q = (—1.1)2),
and let T € R satisfy 0 < T' < oo. We shall consider the spectral collocation method
for the following partial integrodifferential equation with a weakly singular kernel

1
U — Au = / K(t — s)Bu(x, s)ds + f(x,t). (x,t) € @ x (0,7,
0
(1) u = 0, on 90, t>0,
u(x,0) = up(x), in Q,

where B is a general partial differential operator of second order with smooth and
time independent coefficients:

2 2
0 9 5
PR (s03:,) * 2 i) 5 + !

and K is a weakly singular kernel such that

IK(i)(t)l < Oyt~ with 0<vy<1, fort >0, i=0,1.
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Furthermore, throughout this paper, we shall assume that f is sufficiently smooth.
Problems of this nature arise in several areas, such as the theory of linear viscoelastic-
ity and heat conduction in material with memory; see, for example, the monograph
of Renardy et al.([19]).

Some authors proposed and analyzed for the numerical semi discretized (spatially
discretized) methods of (1): (also chenet al.([8]), Pani et al.([15]) for other spatial
discretization methods) The spatial spectral and pseudo—spectral methods and first
order time discretization method have been proposed and analyzed in the work of
Kim & Choi ([11]) .

The numerical method considered in this paper will be obtained by discretizing
in space by a spectral collocation method with Jacobi weights, followed by a finite
difference and quadrature scheme for the time stepping. The spectral collocation
methods have evolved as valuable technique for the solution of a broad class of
problems( see Canuto et al.([5])). The popularity of such methods is due in part
to their conceptual simplicity, wide applicability and ease of implementation. The
advantages of spectral collocation methods over the other methods are that the
calculation of the coefficients in the equations determining the approximate solution
is very efficient, since no integrals need to be evaluated and the use of the fast
Fourier transform allows a less expensive computation time of the derivatives and
the nonlinear terms in collocation methods by Chebyshev polynomials.

The time discretization is very interesting because of the nature of “memory ef-
fect”. The time discretization methods are derived essentially by replacing the time
derivative in (10) by difference quotient and using a quadrature rule for the integral
term. The difficulties involved in such time discretization are that all approximate
values of u(x, -) in (1) have to be retained, causing great demands for data storage.
To overcome this difficulties, higher order quadrature formulas or quadratures based
on the use of sparser set of time levels were proposed in many literature such as Pani
et al. ([16],[17]) and Sloan et al.([20]) for the partial integrodifferential equation with
smooth kernel. In the case of a weakly singular kernel, the regularity of the solution
with respect to time is limited, which makes higher order quadrature formulas use-
less, as well as quadratures based on the use of sparser set of time levels: Formally,

the solution of (1) satisfies

t
uy = Auy + K (t)Bu(0) + / K(t - s)Busds + f;
0
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or
lugy| < Ct™7|Bu(0)] + more regular terms in time, 0 <y <1
In advance, we shall assume that the solution of (1) satisfies
3 |uy) < G(z,t)t™ for some G(z,t) € L([0,T); HZ ().

The aim of this paper is to show the stability and to obtain the error estimates
for the scheme (15).

2. PRELIMINARIES

We now introduce some definitions and recall some basic results which will be
used throughout this paper. We first introduce the weighted Sobolev spaces on the
square associated with the Jacobi weighted measure. For any x = (2, 12) € Q, we
set wa(x) = (1 — 22)*(1 — 22)*, where —1 < a < 1. We define

LZ;,, Q) = {v : © — R measurable; / V2 (X)wa (%) dx < +oo},
Q
which is a Hilbert space for the scalar product

(1,0)r = [ ulx)p(x)un(x) dx.
Q
For any integer m > 0, the weighted Sobolev space is defined by

9 ortay 2
Hn @) = {oe 12, @) gy el L@ (p.0) € Np g <

which is equipped with the norm
(9p+q 2 1/2
( Y ) Wa (x)dx)

vllmwa 2 = (/ Z
p+g<im

For a real number s > 0 which 1s not an integer, the Hilbert space HS_(Q) is
defined by interpolation between Hw (2) and H, QHI(Q) where [s] is the integer part
of s, and its norm is denoted by || - ||s.w,,0. We denote by HS_o(f2) the closure
in H{_(Q) of the space D(Q2) of all functions of C* having a compact support in
Q. Whenever there is no confusion, we drop the subscript Q for || - ||lmw, o and
(-, )mwa,0- Throughout this paper, we denote C by the generic positive constant
depending on K, T and grading exponent q.

For an integer N > 0, we set Py = Py x lP’N, where Py is the space of the
polynomials of degree < N in single variable. Furthermore, we set PQ,(Q) = {p €
Py | p(x) = 0 on 90}
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We set
(1) A, (u,0) = / Vu - V(vwy)dx  for any u,v € H&,mo(ﬂ).
0

A complete study of the properties of the bilinear form A, (- ,-) has been done in
the paper of Bernardi et al.([2]) for one or two—dimensional problems. For our work,
we define the Ritz projection operator II%; : Hul)o“0 — P%(Q) by

(2) Ay (v —TI%v,0) =0, Vo € PX(Q).

The error estimate of the Ritz projection can be found in the paper of Bressan et
al.((1]) and Bernardi et al([2]); for all v € HF () N H}_ (), with 0 < u < o,
c>1

(3) o = %]l pwa < CNN0]lg 00,

where e(p) =pif p<lande(py)=2p—-1if p> 1.

For the spectral collocation methods with Jacobi weights for & > —1, we denote
by ¢§'(= —1), (f*,--- and ¢} (= 1) the nodes of Gauss-Lobatto integration formula
of degree N with respect to the Jacobi weight @ () = (1 — £2)* and w§, w§, - -, and
W% its corresponding weights, respectively (see Bernardi et al.([2]) and Canuto et
al.([5])). Then, we see that

1 N )
@ / O dE =S plEuf  forany pe P

j=0
Next we set for 0 < j, k < N,

x5 = (¢, ¢e)  and Wi = wiwg,

and introduce the “grid” =% = {x;?‘,c ; 0 <4,k < N}. We define the interpolation
operator I% : C%(Q) — Pn(2) by

Iyv(x) = v(x), Vx € Z§.

For any real s and o such that 0 < 4 < o, ¢ > 1, the interpolation error is estimated
as follows (see Canuto et al.(1982)):

(5) o~ I vllpwe < ON*# " 0llw,  for all v € HE (Q).

We now define a discrete inner product:

N
(6) (@ ¥)n = Y SSV(EEWE, Ve, 9 € COD),

,j=0
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then, it follows from (4) that

(¢,1/))N=(¢,¢’)ua, Vo, :¢'/‘/)€P2N—1(Q)'

We denote the error between discrete inner product (-, -)n and continuous inner
pl‘oduct ( ) ’)wo by (E(¢)1 /l/})

(E(¢),1/1) = (¢7¢)N - ((b:w)waa V¢¢ € CO(Q)

It can be shown that (see Bressan et al.([1]) and Canuto et al.([5])): for all ¢ €
HZ, o(),

(7) [(E(¢). ¥)] < ONT|Bllowo [¥llwas V¥ € Pn().
The discrete norm induced by (6)

Igllv = (3, 9)N°, Vo Q)

is equivalent to the Lf,a—norm, namely;

(8) [#lua < ll¢ln < 2]0lua, Vo € Pn($2)

(see 5] ). The following is an easy consequence of (4); for any ¥ € P (Q) and

(b € PN(Q),
o N\ 1 8
(&Ei,lp)N - (¢’ we OF; (d)wa))N'

an($.9) = (w, }avw%))

We now define

N
and

B = 3 (5,22, L2))

I_}a 3
T, W OI;
ij=1 e T

A
3 (brgm) + (b)) . vow B,

j=1
which are, respectively, discrete analogues of A, (¢,1) and
2

o 10 o
Bu,(.4) = Y (ba_¢w_ (g;:- ))

1,j=1

2 P '
+Z(b@%,¢>w + (bod),z/))w , Vo9 € H ().
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From (7), it can be easily shown that the error estimates for an(-, :) and B{ (-, -)
with respect to A, (-, -) and B, (", -) are respectively, for ¢ € HJ_(Q) and for
P € P} (9),

lan (¢,9) = Awa (3:9)] < CN||Sllo06 [19]]1.0a-
() 1B3(6,%) ~ Buo (6, %) < CN"[1llora [¥ll1.0-
It has been proved (see Canuto et al.([5])) that the bilinear form an(:, ) is continuous

and coercive over lP’?V(Q), i.e.. there exist positive constants ¢, ¢g such that

lan (8, %)| < alldlinlPlin, Vo ¥ € PR(Q)

and

an(,¢) > calldll} v V¢ € PR (Q),
where || - |l1,~ is the discrete analogue of Sobolev norm || - |l1w., (i€ HQSHfN =
lollx + IVel%).

3. FuLL DISCRETE SCHEME

In this paper, we shall assume that there is a unique generalized solution of (1)
satisfying the following regularity conditions:
Al : weC([0,T);H3 NH. o),
u € C([O T); L2 )ﬁLl((O T);HZ NH o),
ugy € LY([0, T; L2Q)
A2 we AAnLY[0,T; HS, NH]_,),
u, € L'([0,T); HS,), for some o > 2,
As a starting point for the time discretization of (1), we define the semi-discrete
solution of (1) as the function U : (0,T] — Pxn(Q) such that

t
Uy(x,t) — AU(x,2) = / K(t— $)ByU(x,s)ds + f(x,8), x€EYNQ,
A

(10) Ux,t) =0 on E{NoR, t>0,
U(x,0) = up(x), in E{NQ,
where
2
o oU
= - — 12 ( b (x) ==
)

+ZI“ ( aU) + 1% <b0(x)U) vx € E%.
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For the time discretization of (10), we shall consider the graded mesh:(See also
3,12])
Given M € N, let IIps == {to, - .tm} (0 = to < t; < --- < tpy = T) denote a
partition of the interval [0,T]. With a given partition ITps of [0,T] we associate the

guantities

h := max hy,,
n<M

where hy = t, —tp_1(n =1,--- , M). If the mesh points {t,}*, are given by

n=

11)’ t = (%)QT (n=0,--- , M),

then Ilps is called a graded mesh; in the present context, the so-called grading
exponent g € R will always satisfy ¢ > 1. Let U* € Py(Q) be the approximation of
the exact solution of (10) at time t;. The time discretization considered here will
be based on the backward difference quotient 8,U* = (U* — U*~1)/hy. The integral
term then has to be evaluated by numerical quadrature from the values of U*’s, but
since the integrand is singular, we shall use the product integration: Let the integral
term be denoted by

ot
(12) Ie) = [ Kt = )0(s)ds.
We approximate ¢ in Ji(¢) by piecewise functions
°, 0<s<t
Ptz tj<s<tj, 1<j<k-2

o —t—
k-1/278 1k=3/2 4 T8/ gk-1/2 0y L < g < gy

k172 k-1/2

where we denote that t;_, /5 1= (tx +1k-1)/2, 12 = (¢F +¢* 1) /2 and hy_172 =
(hg + hx-1)/2. Thus we write the quadrature for J(¢) as

] R k—1 tit1 )
) = WD =Y [ Kt~ s)i(s)ds
k-2 '
(14) = krod® + O ke 4 kg1 R 4 kgt Y2 for k> 2
=1
and

11
al(qb) = Kk10¢° = / K(t; — s) ds¢®,
0
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where
( ft‘;'“ K(t — s)ds, ifj<k—2,

th-1 hi—1/2 !

,%.zﬁ BOK(t— )L gy i =k -1,

R () — )AL gs if § = k.

L Yip-1 hg_1/2

In the following lemma, the error estimate for our quadrature scheme (14) is stated.

Lemma 1. Suppose f € C2(0,T], [ € C0.T] and |f"(t)] < Ct™7. If the grading
exponent q satisfies ¢ > 3= 7, then there is a constant Cr depending on f and T
such that

n n tk
> (1) = )| = [ Lo ([ K- (o) ds = 241) )| < Crtpn
k=1 k=1 0

Proof. Define Ey ;(f) for j=0,--- ,k—1by
0 Ktk = 9)(f(s) = 1) ds, for j =0,
Ek‘,j(f) = tt-j+lK(k—s)( ( ) fJ+§)dS’ fOI‘jzl,'-- 7k_27

Job Kt —s)(f(s) — f(s)) ds, for j =k — 1,
where we denote

N th_1/2— S o 8 —tp_ _
f(s) = 1/2 k=~3/2 4 k 3/2fk 1/2
hi_1/2 hi_1/2

Using the mean value theorem for the integrations, we have

131
Eo(f)| < Clti - tr)™ /0 (f(s) — °)ds

< C(t, — t1) "R (o)
C (h)*"[f (no)l. for some ng € [0,11]
< Cp(f)h?, by the hypothesis g(2 — v) > 2.

IA

Moreover, from the error estimates for the trapezoidal rule, we obtain

ti+1 1
Bs(D] = Kt =m) [ (5 = £1*as],  for some 1y € 1,850

< Otk —tjp1)™7 |f”(s)lh3+1
E[t,, 1)

< Clk-35" "hJH, forj=1,-- k-2
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An integral estimate for the summation gives the following inequality:

n

n k-2
thDEkgl < Cy h“’Eth (k= §)"hiyT < Cr(f)h®

To estimate Ek,k_l, we define a linear Lagrange interpolation polynomial

8—tk—1 . , th—8 ;1
+ .
From the triangle inequality and the Lagrange interpolation theorem, we obtain

1£(s) = £ < 17(s) = L) + 1 (s) = L(s)]
2
< max [70)]+ |f(s) ~ L5(9)]

tE[tk 1 tk]

L’}(s) =

Now, to estimate |f(s)— L‘f“(s)l, using the well-known Taylor’s formula with remain-

der;

i
PP el e+ [ - 910,
tp—1
iy
2= b f (k) +/ (tr—1 — s)f"(t) dt,
th—2
we have
max _|f(s) — L§(s)] = |f(te-1) — £*77
sE[tk_l,tk] .
_ 1 hkfk s/2 - 1fk 12 _ p, ph-1
hr—1/2
< Chkhk—lltk_’ﬂ‘
Hence, we obtain the estimate for Ep ;_;:
~ tk
|Exx-1(f)] < max If(S) - f(s)l K(ty — s)ds
iE[tk_l, k tr—1
< ChE max [f"(t)h"
te[tk 1.tk}

< C(f) k¥, ’”hl 7,

Noting that 3¢, t;7hy " < hn " S2r_, 12 hi < Crhs ", we conclude that

M k-1
Doy 1B < Cr(f) R
k=1 " j=0

This completes the proof. U
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Our fully discretized scheme based on the Crank—Nicolson scheme is now defined
by
BUXx) — AURY2(x) = 6H(ByUx)) + f¥12, k> 2
(15) dU N (x) — AU (x) = ¢ ((BNU(X)) + 1.
U°(x) = up(x),
Urx) =0 xeE{naQ,
where

F(ByU(x)) = % (B + o BV} fork>2
4. STABILITY AND CONVERGENCE

In this section, we discuss the stability and the convergence results for the fully
discretized parabolic PIDE. Using (6), we rewrite (15) equivalently as follows:
(B.U* @) — (AUX, gy = GH(BNU, o)) + (.0, V6 € P(9),
U, 9)n = (uo,9)n,
or
GUF. g)n +an(U*.9) = 6*(BR (U, 9) + (f*.9)v, Vo € PR(D), k> 1,
e)) (U° &) = (uo, ®)n,

where we set 6! = o,

- Uk, k=01
(2) Uk = { Uk—1/2, k 2 2’

and define f* similarly.
We now show the stability and obtain the error estimates for the fully discretized
scheme (15) or (1).

Lemma 2. Let 7 := fé"“|K(tk - s)]ds and OKpj = Kij — Kr—1,j—1 for 0 < j <
k < M. If the grading exponent q satisfies % < q for 0 £ v <1, then there is a
positive constant C depending on K, T, q and -y such that

() T <Clk— )R, i<k,

n k
(i1) S N lokgi<C, forn< M.

k=2 j=1
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Proof. Using the mean value theorem, we can easily verify that

(3) q(k = j)h; < (b — t5) < q(k — j)hx < gkhy < Cty, for j <k,

@) (he - b)) < Clk — j)max{%hj, Th), for k> 2

Applying the mean value theorem to 7x; for j < k — 2, it follows from (3) that
Thj < Cr(tk = tj01) Thipn S Ck =) h;7), forj=0,--- k-2

A direct integration yields that

ty
Thk—1 < CK/ (ty —s) 7ds < C’h,lc‘”*,

tr—1
which completes the proof of (i).
To estimate the inequality (ii), for 1 < j < k—2, keeping the mean value theorem

in mind, we have
1

10Kk;| < / K (tk = t; — hjpaw)| (R — hy) du
0

1
+/ lK(tk - t]‘ - hj+1u) - K(tk-l - tj_l - hju)]hj du
0

1 1 —1-
< C;Tkj+01\-/ (tk—l —tj_l—hju) ! ’Y(hk—hj)hj du
0
1., ok (hip 'Y i
< Cf=pt"(k - -2 2l e — hiMter — £V VR ).
< OG- 72 () - e - ) m,)
Using (3) and (4) for the second term of the right hand side, we show that
- Ny g =y L k h;
(5) (hi = ) (tk—1 — t;)7 Ty < Ck ~ j) A’hwahkmaX{}-h—i, }

Then summing |[Oky;| for 1 < j < k — 2, we have
k-2 L 4
Z [Okk;| < Ck—vh,lc_'y/ (1- s)"”(5("—1)(1""')—1 + s'(q_l)'y) ds,
i=1 0

< CkTRTY,

since the hypothesis (g — 1)y < 1. We now turn to the estimates for |0ky ;1| and
|OKk k|:
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h2(1/2 W WL02-u)

1B o 1f</ K (e (1 — )|

hk-1/2 hi—3/2
2
+ [ (1~ )~ a0 - )| B L g,
k-3/2

< C’/ ‘K(hk(l-u)){—hkdu

2
du

+c/ (1= )~ )1 - )

k—3/2
1-7v
<C Ehk .
Similarly, we can obtain the estimate:
' 1 1—
10Kk k| = Kk — Kr—1,5-1] < Czh T,
Thus, we conclude that for n < M,

ZZI&%JK(JZ +k)h ”<O/T.t—7dtgo,
0

k=2 j=1

which completes the proof of (ii). g

Lemma 3. Let the grading exponent q satisfy

2
—— <g<l4+97L
Y

9
For each € > 0, there is a constant C, independent of M such that
n k-1
S ohed (k=TT fifi] < ezhkfk +C. Z n—k) "] Zhjﬂff.
k=1 =0 =0

Proof. Applying the inequality ab < ea® + 1/(4¢€)b? to the left hand side, we obtain

n n ' 2
Sn S ] s Sonste S (Sw- i)
k=1 = k=1 i

It follows form Cauchy—-Schwarz inequality that

k—1 2
HONTEDRI Shk(Zwk hS ")Z(k R

Jj=0 =0

< cZ(k - 3R,
=0
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where the last inequality can be obtained by

thhJJr1 (k-5 <C(h k)l 'Y/o s~ (1 - ) "Tds < C.

Changing the indices and the order of summations, and again changing the indices,

we obtain
n k-1
—yp2—
PIDICEFINS i ZEJ h g fi
k=1 7=0 k=1 j=1
= Zf”Zh Tfi;
—E(n—Hl ”thﬂ
This completes the proof. O

It is well known discrete Gronwall’s lemma: Let {o;}, {3}, and {w;} be any
nonnegative sequences satisfying
n—1
wpn<op+ Y Bw;, n>0.
j=0
Then, there is a positive constant C' satisfying

n—1

(6) wp < Cg{an+EﬁJa3} n > 0.
7=0
In this paper, the following version of Gronwall’s lemma, which will be frequently
used to establish our theory, is needed.

Lemma 4. Let w = {w,} and o = {n} be sequences of nonnegative real numbers
satisfying
n—1

(7) wn<an+2n—]) 'Yhﬂ_lw,, n>0.
=0

Then there is a positive constant Ct such that

n—1
wn < an+Cr Y (n—35)""hi Jey, 0<n<M.
=0
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Proof. For a positive sequence 8 = {8}, we define an iterated sum I;(3):

n—1

1XB) = Z(n—k) “Yhyy 1Bk

Z (n—k)~ 7h,16+ II=Yp), for s > 2.
k=s-1
By induction, we can show that

k-1 '
LH(B) < Gy (n— k)G Y (k= D) DO R

k=1 j=0
(8) < O Z{ n— j)hn 0 h;h;gﬁ],, for s > 1,
and,
S (s=1)(1-
1) < €Y (n - ) {(n - a8,
§=0
n—1
(9) <G Z(n e 7h31+¥[33 for s > 1.
j=0
Then, it follows directly from (7) that
(10) Wn, San+z +Is+1 )7

or

Is+1 < st+t+l Is+1(Is+l( ))

For s(1 —v) —1 > 0, it follows from (8) and ( ) that

n—1
It (w) < C, Zhnh}cplak +C Y R 1R (w)
k=0 k=0
n—1
< C, Zh hrjox +C Yt e I (w).
k=0

Applying ordinary discrete Gronwall’s lemma. (6) and noting Y~ ¢,/ hx1 < Cr, we
obtain

n—1 n—1

(11) L w) < Crd Ml jax <Cr) (n—k) )" Yhy T on
k=0 k=0
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Thus, it follows from (10), (9), and (11) that

n—1
wy, L a, +Cr z(n - k)‘“’h,lc:{ak,
k=0

which completes the proofs.
We now give the stability result for the full discrete scheme:

Theorem 1. Suppose that h(= max,<um hy) is so small that

oh
= Wi <

33

Then the scheme (15) is stable, i.e., there is a posz’tive constant C := C(K,T,q,7)

such that

107 < € (1%l -+ 3 il 41 )

k=1

Proof. For convenience, with the notation U* and f* defined in (2), it follows from

Lemina 2 that

o2 (B (U, )| < Chy 0% wlidlli N,
k-1

o* (B, ) < c{ Sk - ) HT ||Ufu1,N||¢uLN}
=0
+1anl BEIITH 10l
Taking ¢ = U¥ in (1) and noting |7,,| < 7(2 — 5 ’ﬁrhn -) < 7(2~-279) . we have
SO = 105 1R) + o hall 012
< Chk“ﬁknl,N{ 5 Vh;ﬁHUjlll,N} + Rl FE U 1T,
J=o

or

(IT*IR = IU*11R) + hellOF)3 v
k-1

< C [ 0F I D (6 = ) RN e | + Chall v 10 v
i=0
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Summing from £ = 1 to n and applying Lemma 3 with suitable ¢, we have

1015 + D el UF12 p < IUCIR +C D mell I IT* |y
k=1 k=1

n-1 k
+C 3 (= k)T Y A0 v
k=0 7=0
It follows from Lemma 4 with w, = ||U”|3, + > =0 R llU9)2  that

n
n2 0 rk k
71 < {100l + A I § 0¥
Hence, we have

k13
07 < pax 0¥ < € (10 + thnf’“nN) for n < M.
k<n et
this completes the proof.

g

Finally we obtain the second order convergence results for the fully discretized

scheme (15).

Theorem 2. Letu and {U™} be the solution of (1) and (15) respectively. We assume
that u satisfies the regularity assumptions Al, A2 and A3. Further we assume that
u € CS((O,T];LZu (). If the grading exponent q satisfies ¢ = g—fg < 2 for some

p > 0, and h = max,< hy,, is so small that

h
/tK(sndsgc—i, for all k> 1,
o 135

then there exists a constant Cyp independent of N and h such that

, tn
I — U, < CTNl-"(nuono,% # [ o, ds)
0

+Cr Y i |E(f4)I| + Cr(u)h?.
k=1

Proof. Let e¥ = U* — 4* and comparing (1) with the variational form of (1) at time

t =1t and t = tp_1, we have

(12) (8i*, )N + an(E*, ¢) = 65(B% (e, ) + (E(f*), ¢) + R¥ + RS + RE,

where we denote R’f,Réc and R’§ as follows:
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RY = (if, @)u, — Ok, @) = (& — Ou*, ¢)u, — (E(Gu*),4),
= Au, (@, ¢) — an (3", ¢),
Rl?f = 6-k(BN(ubad)) - Bwa (u’ ¢)) + 6k((8u7¢)wa) - jk((Bua¢)wo)'

=
NES
|

Here, we set J, = Ji,
= 1
Jk() = §(Jk( Y+ Jk—a( ), fork>2,

and, ii* and &*’s are similarly defined as in (2).
With the same argument as Theorem 1, taking ¢ = &* in (12), then we have

1 cahg .
i(HekH?v %) + 1 2¢71 185112 x

k-1
<Cth(k DR 1€ hn

(13) +thIE(f")H 1€ |In + hi|RY + RS + RS,

We now turn to the estimates for R¥, RY and R5:
Since u € C2((0,t,]; L2 (2)), using the Taylor formula with the integral form of the

remainder gives
t1
h|(u; — dput, Y] < hlllélllN/ sl ds < C)RTY[E v < Clu)R?|E N
0
If u € C3((0,TY; Lf,a (Q)), then still by the Taylor formula, we obtain

_ (43
B (Y2 = Bk, %)) < B2 /t st ds,
k—1
< CT(u)HékHNhktkl Y fork>2.

Summing up to n, we have

n B n 1 n 1
Bt < oS ()R < oY ke ()2

k=2

N 1k\-14p, 1 \p 2
< Ch gn(n) (37)" < Cr(wh

For the second term of R¥, we obtain

_ _ 1 . tx
(BB, &) < Cp N7 / el ds.

te—1
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We immediately have

n tn
() S IR < el (O 4 N [ i ds).
k=1 ' =n 0

Using (9), Lemma 1 and the inequality ab < ﬁa2 + €b? to obtain the estimates for
Ry and Rj3, we show that

k-1
|R§| + |R§| < CN'™° (”ﬁ'klla.wn Ikl + > (k- j)‘”’l}l?llﬂ”Ha,un IIé"’Ill.N> _
=0

+C(u)h?|e*||n
< CNPO max @[5, + €l + Cl)R?|le¥||w.
i<
Suinming (13) from k& = 1 to n, and applying Lemima 3 with suitable €, we have

n
le™ 1%+ helle® |3 n
k=1

n—1 k
(15) < +C ) (n— k)R] hiallEl n
k=0 =0 :

+ ) I EG)IE Iy + CN?=0) max 1?13
k=1 - -

tn
+max1[ek[]N(CT(u)h2 + CNY=° / It o e ds)
k<n 0

Applying Lemma 4, we have

ol n
el < (Ot + N7 [ o, ds) + (S mIEG L

k=1
CN'~° k
+ max 125 |l wo

tn n
< CrN'™ (oo + [ Nl ds ) + Cr S BB+ Cru)h?
k=1

which completes the proof of the theorem. 0O
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