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FEYNMAN-KAC FUNCTIONALS ASSOCIATED
WITH REGULAR DIRICHLET FORM

K1 SEong CHOI

1. Introduction

In their recent paper|[2], they show that the existence theory for the analytic operator-
valued Feynman path integral can be extended by making use of recent develop-
ments in the theory of Dirichlet forms and Markov process. In this field, there is the
necessity of studying certain generalized functionals of the process (of Feynman-Kac
type). Their study have been concerned with Feynman-Kac type functionals related
with smooth measures associated with the classical Dirichlet form (associated with
the Laplacian).

In this paper, I will initiate the study of properties of Feynman-Kac type func-
tional associated with general (regular) Dirichlet form.

We consider a regular Dirichlet form (€, F) on L?(X,m) where X is a locally
compact separable metric space and m is a positive Radon measure on X with
supp[m] = X. Let M = (R, X:,(, P,) be a Hunt process on X which is m-symmetric
and associated with (&, F).

A function A4 : [0,00) X  — [—o00, 00] is said to be an AF (additive functional) if

(1) A¢(-)is Fy-measurable, where F; is the smallest completed o-algebra which
contains o{X, : s < t} ;
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(2) there exist a defining set A € F, and an exceptional set N C X with
Cap(N) = 0 such that P,(A) = lforallz € X — N, §;A C A for all
t > 0 (6 denotes the shift operator on 1) and for each w € A, Ag(w) =0,
|A¢(w)] < oo for t < ((w), A.(w) is right contiuous and has left limit,
Ay s(w) = Ay(w) + As(Bw) for s,t > 0.

An additive functional A is called PCAF (positive continuous AF) if A is an
additive functional and A.(w) is non-negative and continuous function for each w in
its defining set A. Given a PCAF A, there exists a unique Borel measure ¢ on X,
which is called the Revuz measure of A such that

fim Bl / (A A = (f b= [ W@ ) (02)

for all v-excessive functions h and f € B (Bt denotes all non-negative Borel
functions on X,y > 0 is a constant).

Denote by S the totality of the associated Revuz measures of PCAF’s. The
elements in S are called smooth measures. A simple analytical description of S
has been given in [7]. For a given smooth measure u, we denote by A* the unique
(up to equivalence) positive continuous additive functional such that p is the Revuz
measure of A*. For a signed Borel measure p = pt — p~, we write p € §— S if
pt € S and p~ € S. Also we denote AFT — AP by AP,

Let us introduce the notation

P! f(2) = Eqle™ f(X1)]

provided the right hand side makes sense. Notice that (P} ):>o is the so called
Feynman-Kac functional. If u is the smooth measure in Kato class for the Dirichlet
form associated with the Laplacian, it is realized in [6] that (P{):>0 is a strongly
continuous semigroup on L?(R?). In [4], they show that if 4 € S~ Sk, then (P} ):>0

is a strongly continuous symmetric semigroup on L?(m).
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In this paper, I will show that (P} ):>¢ is a strongly continuous symmetric semi-
group on L?(m) for u which belongs to the larger class (where p € C(p%)) than
S — Sk,-

2. Symmetric strongly continuous semigroup (P} )59 on L*(X,m)

Throughout this paper, (£,F) is a regular Dirichlet form on L*(X,m), where X
is a locally compact separable metric space. Let us denote by B(X) the family of
Borel functions on X. For f € B(X), set

= inf su z)| .
Il = g, inf _, supIf(e)

Definition 1. A smooth measure u is said to be in Kato class (u € Sk in no-
tation ) , if

lim||E.A¥||, =0

iom | 2421

Note 1. Let (£,F) be the classical Dirichlet form generated by Brownian motion

(X:) on R%. In this case, Sy coincides with the generalized Kato class introduced
in [6].

Let So be the totality of the (positive Radon) measures of finite energy integral.

Let us introduce the family S, as follows.
Sk, = {peSknS : /,L(X) < oo}

Theorem 1. A positive Borel measure u on X is smooth if and only if there exists
an increasing seguence {F, }n>1 of compact sets satisfying the following properties.
(1) Ir, - p €Sk, Vn21
(2) W(X —UF,)=0
(3) limp—oo Cap(K — F,) =0 for all compact set K.
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Proof. See [3 |Theorem 2.4.

Fora>0,pandvin S-S, f € B(X), we set

U+ 1(2) = Bal " et f(X,)dA}]

provided the right-hand side makes sense. When v = m, we simply write U*H# f
for UgtHf.

Theorem 2. Let u,v € S, Then the following two statements are equivalent

(1) infasollUE+H1]l; < 00 and infaso, w1 (TEH)"1], < 1
(1 stands for the constant function with value 1)
(2) There exists a set N with Cap(N) = 0 such that for all 0 < T < o0,

t

sup sup E[e"A¢+Ac +/ e A FALJ(AF + AY)] < o0
t<TzeX-N 0

Proof. see [1].

Definition2. For a given u € S, smooth measure v is compatible with p if v
satisfies one of conditions in Theorem 2. The set of all smooth measures which are

compatible with p will be denoted by C(u)
Theorem 3. For any p € S, Sp C C(p).

Proof. Let O be the vanishing measure on X. If v € Si, then
: o+o —_
;I;f;) “Uv 1”4 =0

Thus we have v € C(0) C C(p)
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Note 2. An example which does not belong to Kato class but belong to C(p) was
given in [5] appendix 1.

Lemma 1. Let 4 €S — S be such that u~ € C(ut). Then there exists constant c
and B such that

m

|E.e 4|, < cePl.

Proof. Since p~ € C(pt) , by Theorem 2 (2), there exists a constant A > 1 such
that
sup ||E.e™ |, <A < o0

0<t<1
For t = n + s , n being a natural number and 0 < s <1,
E.e = E e Ex e ] <A™ ge. z€ X
puting ¢ = A and 8 = log) ,

|B.e™4 g < e

From now on, let us use the short notation L%(y) for L?(X, ). For u € S, we

set

Qu(f9) = /X f(z) - (@) (dz), Vg€ Ll +m)

one can show that L?(|u| +m) is dense in L%(m). Hence @, is a quadratic form on
L?*(m). We put

gu(f’g) ZS(f,g)+Q#(fvg)7 vf7g € -7:”

where

F = F 0 I2(|u] +m)
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Theorem 4. Let p € S — S. Then the following assertions are equivalent to each

other.

(1) (&#,F*) is lower semibounded
(2) (Pf)t>0 is a strongly continuous semigroup on L*(X,m)

(3) There exists constants ¢ and (8 such that
1P fllzmy < e fllL2gm), VF € L2(m)
(4) There exists a > 0 such that
UtH(LA(m)) C L*(m)

(5) Q- is relatively form bounded with respect to (8“+,.7:“+) with bound <1

If any one of the above conditions holds, then P} is a bounded symmetric oper-
ator on L%(m) for each t > 0.

Proof. See [4]. Theorem 4.1

Theorem 5. Let 4 € S — S be such that p~ € C(ut). Then P} is a symmetric
bounded operator on L?(m) for each t > 0, i.e. there exist constants ¢ and 8 such
that

I1P£ fllzagmy < ce® 11l L2 (m)

Proof. By Theorem 1, there exists an increasing sequence {F; },>; of compact sets
such that Ip, - p~ € Sk, u(X — UF,) = 0 and lim,—oc Cap(K — F3,) = 0 for any
compact set K . Let us put up = p¥ —Ip,-p~ and fr, = (|f|An)IF,, for an arbitrary
function f on X. Ip, - p~ € C(2u™) . By Lemma 1 , there exists constants ¢ and
B such that ||E.e~247 ||, < c?e?Pt. We have

|PPfol? < (E.e 2 )E.|fo|?) < PP E.|f,)? qe z€X
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1 PE fullz2(m) < c€® |l fallr2cm) < ce*||F|L2(m)

By the dominated convergence theorem,

|PL fllL2gmy < c€®| fll L2(m)-

Theorem 6. Let u € S — S be such that u~ € C(ut). Then (P{')¢>o is a strongly

continuous symmetric semigroup on L?*(m)

Proof. n~ € C(pt) implies A\p~ € C(ut) for some A > 1 ( Theorem 2 (1) ).

Since Ap~ € C(pt*). By Theorem 5, there exist constants c; and B; such
that HP,(“J(")‘“—)fHLz(m) < c1€”||fllL2(m). By Theorem 4, Q- is relatively form
bounded with respect to (£#F, F#¥) with bound < A™! < 1. (€#,F*) is bounded
from below and closed by the KLMN Theorem [10]. By Theorem 4, (P} )t>o is a

strongly continuous symmetric semigroup on L%(m).
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