J. Korea Soc. Math. Ed. Ser. B: Pure Appl. Math. 5(1998), no. 1, 73-78

INJECTIVE HYPERBOLICITY OF PRODUCT DOMAIN

KI SEONG CHOI

ABSTRACT. Let $H_1(\Delta, M)$ be the family of all 1-1 holomorphic mappings of the unit disk $\Delta \subset \mathbf{C}$ into a complex manifold M. Following the method of Royden, Hahn introduces a new pseudo-differential metric S_M on M. The present paper is to study the product property of the metric S_M when M is given by the product of two domains D_1 and D_2 in the complex plane \mathbf{C} , thus investigating the hyperbolicity of the product domain $D_1 \times D_2$ with respect to S_M metric.

1. Introduction

Let M be a complex manifold of dimension n and T(M) be the complex tangent bundle on M. We define a differential metric on M by an upper semicontinuous function

$$F_M:T(M)\to R^+\cup\{0\}$$

such that for each $(z,\xi) \in T(M)$

$$F_M(z,\lambda\xi) = |\lambda| F_M(z,\xi), \ \lambda \in \mathbf{C}$$

and

$$F_M(z,\xi) > 0$$

for $\xi \neq 0$. We say that F_M is a pseudo-differential metric if it satisfies

$$F_M(z,\xi) \geqq 0$$

for $(z,\xi) \in T(M)$. M is said to be hyperbolic with respect to F_M if ,for each $z_0 \in M$, there exists a neighbourhood $U(z_0)$ and a constant c > 0 such that

$$F_M(z,\xi) \ge c |\xi|$$

Received by the editors April 20, 1998.

1991 Mathematics Subject Classifications. Primary 32H25, 32E25.

Key words and phrases. Kobayashi-Royden metric, S-metric.

for $z \in U(z_0)$ and $\xi \in T_z(M)$.

Let $H(\Delta, M)$ be the family of all holomorphic mappings of the unit disk $\Delta \subset \mathbf{C}$ into a complex manifold M. The Kobayashi-Royden metric (KR-metric) is defined by

$$K_M(z,\xi) = \inf\{|v| : \exists f \in H(\Delta,M) \text{ such that } f(0) = z, f'(0)v = \xi\}.$$

where the inf is taken over all holomorphic mappings of \triangle into M such that $f(0) = z, f'(0)v = \xi$. In terms of a differential metric F_M , the KR-metric may also be written by

$$K_M(z,\xi) = \inf \left\{ rac{F_M(z,\xi)}{F_M(f(0),f'(0))} : \exists f \in H(riangle,M) ext{ such that } f(0) = z
ight\}$$

and the S-metric by

$$S_M(z,\xi)=\inf\left\{rac{F_M(z,\xi)}{F_M(f(0),f'(0))}:\exists f\in H_1(riangle,M)\ ext{ such that } f(0)=z
ight\}$$

where $H_1(\triangle, M)$ denotes the class of all injective holomorphic maps of \triangle into M and the inf is taken over all $f \in H_1(\triangle, M)$ such that f(0) = z.

The fact that the definition involves only injective holomorphic maps implies that S_M dominates the Kobayashi-Royden pseudo-differential metric K_M . However, it is shown in [1] that for $M = \mathbb{C} \setminus \{0\}$, S_M is a complete differential metric, while $K_M \equiv 0$.

From the work of Siu [5] and Minda [3], it is known that if M is a Riemann surface, then it is S-hyperbolic (i.e. hyperbolic with respect to S_M) unless it is covered by the complex plane or the extended complex plane.

The present paper is devoted to investigating the behaviour of $S_{D_1 \times D_2}$ for two domains D_1 and D_2 in the complex plane. We shall show in section 2 that if D_1 or D_2 is the unit disk in \mathbb{C} , then $S_{D_1 \times D_2} = K_{D_1 \times D_2}$. In section 3, it is shown that if D_2 is hyperbolic with respect to K_{D_2} , then $\Delta \times D_2$ is hyperbolic with respect to $S_{\Delta \times D_2}$.

2. S-metric in the unit disk

Let M and N be two complex manifolds. Let F_M and F_N be differential metrics of M and N, respectively. Then $\max(F_M, F_N)$ defines a differential metric on

 $M \times N$. Therefore, for each $(z, w) \in M \times N$,

$$K_{M\times N}((z,\omega),(\xi,\eta)) = \inf\left\{\frac{\max\{F_M(z,\xi),F_N(\omega,\eta)\}}{\max\{F_M(f(0),f'(0)),F_N(g(0),g'(0))\}}: (f,g) \in H(\Delta,M\times N), (f,g)(0) = (z,\omega)\right\}$$

for $(\xi, \eta) \in T_z(M) \times T_w(N)$. By definition (See [1]),

$$S_{\triangle \times D}((z,\omega),(\xi,\eta)) = \inf \left\{ \frac{\max\{F_{\triangle}(z,\xi),F_{D}(\omega,\eta)\}}{\max\{F_{\triangle}(f(0),f'(0)),F_{D}(g(0),g'(0))\}} : (f,g) \in H_{1}(\triangle,\triangle \times D), (f,g)(0) = (z,\omega) \right\}$$

It is easily shown by definition that $S_{\triangle \times D}$ dominates $K_{\triangle \times D}$. Applying the distance decreasing property of KR-metric for the projections

$$P: M \times N \to M, \ Q: M \times N \to N,$$

we have

$$K_{M\times N} \ge \max\{K_M, K_N\}.$$

The opposite inequality also holds for the KR-metric. In fact, we have:

Lemma 1. Let M and N be two complex manifolds. Then

$$K_{M\times N} = \max\{K_M, K_N\}.$$

Proof. See [1].

The same result is, however, not true for the S-metric (See [1]). But if we consider the unit disk \triangle in \mathbb{C} and domain D in \mathbb{C} , we obtain the following result.

Theorem 1. If \triangle is the unit disk in \mathbb{C} and D is the domain in \mathbb{C} , then

$$S_{\triangle \times D} = \max\{K_{\triangle}, K_{D}\} = K_{\triangle \times D}.$$

Proof. Let F_{\triangle} and F_D be any differential metric of \triangle and D, respectively. By the definition of $K_D(\omega, \eta)$, $\exists \psi \in H(\triangle, D)$ with $\psi(0) = \omega$ and, for any $\varepsilon > 0$,

$$\frac{F_D(\omega,\eta)}{F_D(\psi(0),\psi'(0))} \le K_D(\omega,\eta) + \varepsilon.$$

By the definition of $S_{\triangle}(z,\xi)$, $\exists \varphi \in S(\triangle,\triangle)$ with $\varphi(0)=z$ and the fact that both KR-metric and S-metric coincide on the unit disc \triangle (see [1]), we have

$$\frac{F_{\triangle}(z,\xi)}{F_{\triangle}(\varphi(0),\varphi'(0))} \leqq S_{\triangle}(z,\xi) + \varepsilon = K_{\triangle}(z,\xi) + \varepsilon$$

Therefore, there exists an $h = (\varphi, \psi) \in S(\Delta, \Delta \times D)$ with $h(0) = (z, \omega)$ and

$$\begin{split} S_{\triangle\times D}((z,\omega),(\xi,\eta)) \\ &= \inf \big\{ \frac{\max\{F_{\triangle}(z,\xi),F_D(\omega,\eta)\}}{\max\{F_{\triangle}(f(0),f'(0)),F_D(g(0),g'(0))\}} : \\ &\qquad (f,g) \in S(\triangle,\triangle\times D),(f,g)(0) = (z,\omega) \big\} \\ &\leq \frac{\max\{F_{\triangle}(z,\xi),F_D(\omega,\eta)\}}{\max\{F_{\triangle}(\varphi(0),\varphi'(0)),F_D(\psi(0),\psi'(0))\}} \\ &\leq \max \left\{ \frac{F_{\triangle}(z,\xi)}{F_{\triangle}(\varphi(0),\varphi'(0))}, \frac{F_D(\omega,\eta)}{F_D(\psi(0),\psi'(0))} \right\} \\ &\leq \max\{K_{\triangle}(z,\xi) + \varepsilon, K_D(\omega,\eta) + \varepsilon\}. \end{split}$$

This proves that

$$S_{\triangle \times D}((z,\omega),(\xi,\eta)) \leq \max\{K_{\triangle}(z,\xi),K_{D}(\omega,\eta)\}$$

Since $S_{\triangle \times D}$ dominates $K_{\triangle \times D}$ by definition, we have

$$S_{ riangle imes D}((z,\omega),(\xi,\eta)) = \max\{K_{ riangle}(z,\xi),K_D(\omega,\eta)\} = K_{ riangle imes D}((z,\omega),(\xi,\eta)).$$

3. S-hyperbolicity in product domain

Definition 1. Let M be a complex manifold furnished with a pseudo-differential metric F_M . M is said to be hyperbolic with respect to F_M if, for each $z_0 \in M$, there exists a neighbourhood $U(z_0)$ and a constant c > 0 such that

$$F_M(z,\xi) \ge c |\xi|$$

for $z \in U(z_0)$ and $\xi \in T_z(M)$.

Theorem 2. Let M be any domain in C with $M \neq C$. Then

$$S_M(z,\xi) \geqq rac{|\xi|}{4\delta(z)},$$

where $\delta(z)$ denotes the distance from $z \in M$ to $\mathbb{C} \setminus M$.

Proof. See [1].

From Theorem 2, $M = \mathbb{C} - \{0\}$ is S-hyperbolic (i.e. hyperbolic with respect to S_M). In the following example, we will show that $M \times N$ may not be S-hyperbolic (i.e. hyperbolic with respect to $S_{M \times N}$) even if M and N are S-hyperbolic.

Example 1. Let $(1,1) \in M \times M$ and $(1,\sqrt{2}) \in \mathbb{C}^2$. The function $h_n \in H(\triangle, M \times M)$ defined by

$$h_n(\lambda) = (f_n, g_n)(\lambda) = (e^{n\lambda}, e^{\sqrt{2}n\lambda})$$

is injective. Indeed, if λ_1 and λ_2 are distinct points of \triangle such that $h_n(\lambda_1) = h_n(\lambda_2)$, then

$$n(\lambda_2 - \lambda_1) = 2\pi k_1 i, \ k_1 \in \mathbf{Z}$$

$$n(\lambda_2 - \lambda_1)\sqrt{2} = 2\pi k_2 i, \ k_2 \in \mathbf{Z}.$$

Therefore, we get $\sqrt{2} = \frac{k_2}{k_1} \in \mathbf{Q}$, which is a contradiction. Since,

$$h_n(0) = (f_n(0), g_n(0)) = (1, 1)$$

$$h'_n(0) = (f'_n(0), g'_n(0)) = (n, \sqrt{2}n),$$

$$S_{M\times M}\{(1,1),(1,\sqrt{2})\} \leq \frac{\max\{F_M(1,1),F_M(1,\sqrt{2})\}}{\max\{F_M(1,n),F_M(1,\sqrt{2}n)\}} = \frac{1}{n}.$$

Since n is arbitrary, $S_{M\times M}\{(1,1),(1,\sqrt{2})\}=0$. i.e. $M\times M$ is not S-hyperbolic.

Theorem 3. Let D be a domain in \mathbb{C} . If D is hyperbolic with respect to K_D , then $\triangle \times D$ is S-hyperbolic.

Proof. Since \triangle is S-hyperbolic, there exists a neighbourhood $U(z_0)$ of z_0 and a constant $c_1 > 0$ such that if $z \in U(z_0)$, then $S_{\triangle}(z,\xi) \geq c_1 |\xi|$. We can choose $\varepsilon_1 > 0$ so that $\{z \in \mathbb{C} | |z - z_0| < \varepsilon_1\} \subset U(z_0)$.

Since D is hyperbolic with respect to K_D , there exists a neighbourhood $U(\omega_0)$ of ω_0 and a constant $c_2 > 0$ such that if $\omega \in U(\omega_0)$, then $K_D(\omega, \eta) \geq c_2 |\eta|$. We can choose $\varepsilon_2 > 0$ so that $\{\omega \in \mathbb{C} | |\omega - \omega_0| < \varepsilon_2\} \subset U(\omega_0)$.

Put $c = \min\{c_1, c_2\}$. Then, by Theorem 1,

$$\begin{split} S_{\triangle \times D}((z,\omega),(\xi,\eta)) &= \max\{K_{\triangle}(z,\xi),K_{D}(\omega,\eta)\} \\ & \geqq \max\{c_{1} \mid \xi \mid, \mid c_{2} \mid \eta \mid\} \\ & \geqq c \quad \max\{|\xi|,|\eta|\} \end{split}$$

for all (z, ω) in $\{(z, \omega) : |z - z_0| < \varepsilon_1, |\omega - \omega_0| < \varepsilon_2\}$. Hence $\Delta \times D$ is S-hyperbolic.

REFERENCES

- 1. K. T. Hahn, Some remark on a new pseudo-differential metric, Ann. Polonici Mathematici 39 (1981), 71-81.
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1971.
- 3. C. D. Minda, The Hahn metric on Riemann surfaces, Kodai Math. J. 6 (1983), 101-105.
- H. L. Royden, Remarks on the Kobayashi metric, Lecture Notes in Math. (Springer-Verlag) 185 (1971), 125-137.
- 5. Y. T. Siu, All plane domains are Banach-Stein, Manuscripta Math. 14 (1974).

DEPARTMENT OF MATHEMATICS, KONYANG UNIVERSITY, NONSAN 320-800, KOREA.