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PSEUDOLINDELOF SPACES AND HEWITT
REALCOMPACTIFICATION OF PRODUCTS

CHANG IL KM

ABSTRACT. The concept of pseudoLindeldf spaces is introduced. It is shown that the
followings are equivalent:

(a) for any two disjoint zero-sets in X, at least one of them is Lindel6f,

(b) [vX - X|<1,and

(c) for any space T with X C T, there is an embedding f : vX — vT such that
f(z) = z for all z € X and that if X x Y is a z-embedded pseudoLindelof
subspace of uX x vY, then v(X xY) = vX x vY.

1. Introduction

For any Tychonoff space X, X denotes the Stone-Cech comactification of X
and vX denotes the Hewitt realcompactification of X. Glicksberg [5] showed that
for any infinite spaces X and Y, 8X x BY = B(X xY) if and only if X x Y is
pseudocompact. An important open question in the theory of Hewitt realcompact-

ifications of Tychonoff spaces concerns when the equality vX x vY = v(X xY) is
valid (cf. {6]). Comfort (3] showed that if X x Y is C*-embedded in vX X vY, then
vX xvY = v(X xY) and that if card(X) or card(Y) is non-measurable and X XY
is C*-embedded in X x GY, then vX x vY = v(X x Y). McArthur [7] has shown
that X xY is C*-embedded in X x Y if and only if the projection 7x : X xY — X

is z-closed.

In this paper, we introduce the concept of pseudoLindel6f spaces and show that

for a pseudoLindeldf space X, the followings are equivalent(cf. Theorem 2.6):
(a) wX - X| <L

(b) For any two disjoint zero-sets in X, at least one of them is Lindel6f.
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(c) For any space T with X C T, vX C vT.

Moreover, we will show that if X X Y is a z-embedded pseudoLindel6f subspace
of uX x vY, then v(X x Y) = vX x vY and that if X x Y is a pseudoLindelof
space such that card (X) or card (Y) is non-measurable and X is a P-space, then
v(X xY) = vX x vY if and only if the projection mx : X x ¥ — X is z-closed.
For the terminology, we refer to Gillman-Jerison [4] and Porter-Woods [8].

2. PseudoLindeldf spaces

All topological spaces discussed in this paper are assumed to be Tychonoff spaces.
For a space X, C(X) denotes the ring of all continuous real-valued functions on X
and C*(X) denotes the subring of bounded functions. A subspace S of a space X is
said to be C-mbedded in X if every function in C(S) extends to a function in C(X).
C*-embedding is defined analogously. For a space X, 8X denotes the Stone-Cech
compactification of X, which is characterized as a compact space in which X is
densely C*-embedded and vX denotes the Hewitt realcompactification of X, which
is characterized as a realcompact space in which X is densely C-embedded. Both
of the spaces 8X and vX are unique up to a homeomorphism which extends the

identity on X.
Definition 2.1. A space X is called pseudoLindeléf if vX is Lindelof.

Every Lindelof space is pseudoLindeléf. A separable space X is pseudoLindelof
if and only if every base is complete (cf. [2]). If X is a pseudocompact space,
then vX = BX and hence X is a pseudoLindel6f space. PseudoLindelof spaces
are not productive and a C-embedded subspace of a pseudoLindelof space is again

pseudoLindelof.

Ezample 2.2. Let w; be the first uncountable ordinal and D(w;) the discrete space
of cardinality w;. Let § = D(w;)U{p}, topologized as follows. Each point of D(w;)
is isolated, and a subset G of S that contains p is open in § if and only if [§ ~ G| <
Ry. Then S is a zero-dimensional Hausdorff space and hence Tychonoff. Let N* =
N U {w} denote the one-point compactification of N and X = § x N* — {(p, w)}.
Then X is called Dieudoneé plank and vX = § x N* (cf. [8]). Since S is Lindelof,

X is pseudoLindelof. But X is neither Lindelof nor pseudocompact.
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For a space X and f € C(X), f~1(0), denoted by Z(f), is called a zero-set in X
and X — f~1(0) is called a cozero-set in X. It is well-known that for any f € C(X),
clux(Z(f)) = Z(fY), where fY is the extension of f to vX (cf. [4]).

Lemma 2.3. Let X be a pseudoLindeléf space and A a zero-set in X. Then A is
closed in vX if and only if A is Lindeldf.

Proof. Suppose that A is Lindelof. Let p € vX — A. If p € X, then p ¢ cl,x(A4).
Suppose that p ¢ X. For any a € A, there is a cozero-set neighborhood C, of a
in vX such that p ¢ C,. Since A is Lindelof, there is a countable subfamily U of
{Co:a€ A} withACJU. Let C=JU and Z=vX —C. Thenpe Z, Z is a
zero-set in vX and ANZ = .

Since X is C*-embedded in vX, clyx(A4)N cl,x(Z N X) = B and since cl,x (Z N
X)=12Z,p ¢ cl,x(A) and hence A = cl,x(A4). The converse is trivial. O

For a space X, Z(X) denotes the set of zero-sets in X. A non-empty subfamily
F of Z(X) is called a z-filter on X if
(i) 0 ¢ 7,
(i) if A,B € F,then ANB € F, and
(i) f Ze Fand ZC A€ Z(X), then A€ F.
A maximal z-filter on X is called a z-ultrafilter on X and a z-ultrafilter on X is

called real if it has the countable intersection property.

Definition 2.4. Let X be a dense subspace of a space T, F a z-filter on X and
p € T. Then F converges to the limit p if every neighborhoods of p in T' contains a

member of F.

Lemma 2.5 [4]. Let X be a dense subspace of T. The following are equivalent:

(a) X is C-embedded in T.

(b) Ewvery point of T is the limit of a unique real z-ultrafilter on X.

(c) vX = oT, that is, there is a homeomorphism h : vX — T such that
h(z) =z for allz € X.

For any space X and F C 2%, [ clx(F) denotes the set ({ clx(F): F € F}.

Theorem 2.6. Let X be a pseudoLindeldf space. Then the following are equiva-
lent:

(a) For any two disjoint zero-sets in X, at least one of them is Lindelof.
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(b) JuX — X| < 1.
(c) For any space T with X C T, there is an embedding f : vX — vT such that
flz) =z forallz € X.

Proof. (a) = (b) Suppose that 2 < |[vX — X|. Pick p,q € vX — X with p # q. By
Lemma 2.5, there are z-ultrafilters AP and .A? on X such that p (g, resp.) is a limit
of AP (A9, resp.) and since p # ¢, AP # A9 and hence there are disjoint zero-sets
A, B in X such that A € A? and B € A?. Note that p € cl,x(A4) and q € cl,x(B).
We may assume that A is Lindelof. By Lemma 2.3, A is closed in vX and hence
p ¢ A = clyx(A). This is a contradiction.

(b) = (a) Suppose that v X — X = {p}. Take any disjoint zero-sets A and B
in X. Then cl,x(A) N clyx(B) = @ and hence p ¢ cl,x(A) or p ¢ cl,x(B). So
clyx(A) = A or cl,x(B) = B. Hence A is Lindeldf or B is Lindel6f.

(b) = (c) Suppose that vX — X = {p}. Take any space T with X C T. Then
there is a continuous map f : vX — vT such that f(z) = z for all z € X (cf. [4]).
Let ¢ = f(p) and Y = X U {g}. Then X is a dense subspace of Y. Let g be the
corestriction of f to Y, then g : vX — Y is one-to-one, onto, and continuous.

We will show that g is a homeomorphism. Since vX is Lindelof, Y is Lindelof
and so Y is a realcompactification of X. Since X is C-embedded in vX, there is
a unique real z-ultrafilter A? on X such that p is a limit point of AP. Take any
neighborhood V of ¢ in Y. Then g~!(V) is a neighborhood of p in vX. Sincepisa
limit point of AP, there is A € AP with A C g~(V) and so g(4) = A C V. Hence
q is a limit point of AP.

Suppose that F is a real z-ultrafilter on X such that ¢ is a limit point of F. If
NF # 0, then (N F = {z} for some z € X. Since z # g, there are disjoint zero-set
neighborhoods C of z and D of ¢ in Y. Since CNX € F and (CN X)N (DN X)
= 0,q is not a limit point of F. Hence NF = @. Since F is real, clyx(F) =
{clyx(F): F € F} is a z-filter on vX with the countable intersection property and
since vX is Lindeldf, M clyx(F) # 0. Hence () clyx(F) = {p}. Let F € F and
suppose that F' ¢ AP. Then there is B € AP with F N B = 0 and so clyx(F) N
clyx(B) = §. Since p € cl,x(B), this is a contradiction. Hence F = AP. Thus
every point of Y is the limit of a unique real z-ultrafilter on X. By Lemma 2.5, X
is C-embedded in Y and therefore, g is a homeomorphism.

(c) = (b) Suppose that there are p,q € vX — X withp#¢. LetY = XU {p,q}
and R = {(z,z) : € Y}U{(p,q), (g,p)}. Then R is an equivalence relation on Y.
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Let K be the quotient space Y/R and 7 : Y — K the quotient map. Clearly, K
is a Tychonoff space and X is a dense subspace of K. By the assumption, there is
an embedding f : vX — vK such that f(z) =z for all z € X. Since X is dense in
Y and (jom)|x = flx, jon = fly, where j : K = vK is the dense embedding.

Since f is one-to-one and p # g, f(s) # £(q) but j(n(p)) = 7(s) = o] = [a] =
7(q) = j(m(q)). This is a contradiction. [

A subspace Y of a space X is z-embedded in X if for any zero-set A in Y, there
is a zero-set Z in X with A= ZNY. It is known that a space X is z-embedded in
each of its compactifications if and only if for any two disjoint zero-sets in X, one
of them is Lindel6f (cf. [1]). Using this, we have the following:

Corollary 2.7. Let X be a pseudoLindeldf space. Then [vX — X| <1 if and only
if X is z-embedded in each of its compactifications.

Recall that a space X is called quasi-F if every dense cozero-set in X is C*-
embedded in X, equivalently, every dense z-embedded subspace of X is C*-em-
bedded in X.

Corollary 2.8. Let X be a pseudoLindelof space. If |[vX — X| < 1, then X s

the unique compactification of X which is quasi-F.

3. Hewitt realcompactification of a product space.

The equality v(X x Y) = vX x vY is to be interpreted to mean that X x Y is
C-embedded in vX x vY.

Lemma 3.1 [3]. Let X and Y be spaces. Then v(X xY) =vX xvY if and only
if X xY is C*-embedded in vX X vY.

Theorem 3.2. Let X andY be spaces such that X XY is a pseudoLindeldf spaces.
Then X x Y is z-embedded in vX x vY if and only if v(X xY) = vX X vY.

Proof. Suppose that X x Y is z-embedded in vX x vY. Since vX x vY is a
realcompact space, there is a continuous map f : v(X X Y) = vX x vY such that
f(z,y)) = (z,y) for all (z,y) € X x Y. Take any (p,q) € (vX X vY) - (X xY).
Then there is a z-ultrafilter A? on X (A% on Y, resp.) such that p (g, resp.) is the
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limit of AP (A9, resp.) and hence

{®:9} = () clox (47) x ([ cloy (A2)).

Let F be the 2-filter on X x Y generated by {Ax B: A € A?, B € A%}. Then F
has the countable intersection property and () F = 0. Since v(X x Y) is Lindelsf,
N clyxxv)(F) # 0. Pick z € ) cly(xxy)(F). Then for any A € A? and B € AY,

f(z) € f(clyxxy)(4A x B)) C cliuxxvy)(f(A x B))
= Cl(vavY) (A X B)
= clyx(A4) x clyy (B).

Hence f(z) € (N clyx(AP)) x (N cluy (A?)). So f(z) = (p,q). Thus f is onto.

Take any two zero-sets A and B in X X Y with AN B = (). Then there are
zero-sets C' and D in vX x vY with A =CN(X xY)and B= DN (X xY).
Since f/H{CND)N(X xY) = 0 and f~}(C N D) is a zero-set in v(X x Y),
f~H(CND) = P and since f is onto, CND = P. So el x xvy) (AN cliyx xoy)(B) = 0.
By Urysohn’s extension theorem, X x Y is C*-embedded in vX X vY. By Lemma
3.1, v(X xY) =vX x vY. The converse is trivial. O

Definition 3.3. Let X and Y be spaces. Then f: X — Y is called z-closed if for
any zero-set Z in X, f(Z) is closed in Y.

Recall that a space X is called a P-space if every Gg-set in X is open in X.

Remark 8.4. (1) If the projecton mx : X x Y — X is z-closed, then X is a P-space
or Y is a pseudocompact space (cf. [8]).

(2) The projecton mx : X XY — X is z-closed if and only if X xY is C*-embedded
in X x BY (cf. [3]).

(3) If card(X) or card(Y') is non-measurable and X xY is C*-embedded in X x 3Y,
then v(X xY) =vX x oY (cf. [3]).

Theorem 3.5. Let X be a P-space and X x Y a pseudoLindeldf space. Ifu(X x
Y) = vX x vY, then the projecton nx : X x Y — X is z-closed.

Proof. Take any zero-set A in X xY and z ¢ 7x(A4). Then ({z} xY)NA = 0.
We will show that {z} x Y is C-embedded in X x Y. Take any continuous map
f:{z} xY — R. Note that the map h: Y — {z} x Y, defined by h(y) = (z,v),
is a homeomorphism. Let ¥ = foh and defineamap 0: X — R by 0(z) =0
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for all z € X. Then the map | : X x Y — R, defined by I((2,y)) = 0(2) + k(y),
is continuous and I|(z;}xy = f. Hence {z} x Y is C-embedded in X x Y. Thus
{z} x Y and A are completely separated in X x Y (cf. [4]).

Since v(X xY) = vX xvY, ({2} xvY)N clyxxvy (A) = 0. For any y € vY, there
are open neighborhoods Cy of z in X and Dy of y in Y such that (Cy, x D,)NA = 0.
Since vY is Lindeldf, there is a sequence (yr) in vY with {z} xvY C J{Cy, x D, :
n € N}. Let Z =(){Cy, : n € N}. Since X is a P-space, Z is open in X and
{z} x vY C Z x J{Dy, : n € N}. Moreover, (Z x vY) NA = 0. Thus ZNmA) =
0 and so z ¢ clx(mwx(A)). Therefore wx(A) is closed in X. O

Corollary 3.6. Suppose that X XY is a pseudoLindelof space such that card(X)
or card(Y") is non-measurable and X is a P-space. Then mwx is z-closed if and only
fv(X xY) =vX xvY.
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