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UNIFORMLY LOCALLY UNIVALENT FUNCTIONS

TAI SUNG SONG

ABSTRACT. A holomorphic function f on D = {z : {z] < 1} is called uniformly
locally univalent if there exists a positive constant p such that f is univalent in every
hyperbolic disk of hyperbolic radius p. We establish a characterization of uniformly
locally univalent functions and investigate uniform local univalence of holomorphic
universal covering projections.

1. Introduction

We begin with a brief introduction to hyperbolic geometry on the open unit disk
D = {z: |z| < 1}. For a general discussion of hyperbolic geometry on D we refer
Beardon [2], Farkas and Kra [4]. The hyperbolic distance on D induced by the
hyperbolic metric Ap(z)|dz| = 2|dz|/(1 — |z]?) is

a—1b

1—ab|

dp(a,b) = 2tanh™?

The hyperbolic disk in D with center a € D and hyperbolic radius p,0 < p < 00, is
defined by

Dy(a,p) = {z : dr(z,a) < p}.

Suppose f is a holomorphic function on D. For z € D, let p(z, f) be the hyperbolic
radius of the largest hyperbolic disk in D centered at z in which f is univalent. Set

p(f) =inf{p(z,f): z € D}.
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A holomorphic function f on D is called uniformly locally univalent (in the hyper-
bolic sense) if p(f) > 0. The quantity p(f) is called the hyperbolic radius of uniform
univalence for f.

We note that
2 € Dp(a,p) & |z—al —az| < ta,nhg.

Let R = tanh g. Then

z € Du(a,p)  |z—a|® < R?|1 —az]*.

From the inequality |z — a|? < R?|1 — @2|?, we obtain

(1 - R¥)a

2
_ _ B2(1— [af?)?
1-R2q2

(1 - R?|af?)*’

z

Thus, the hyperbolic disk Dx(a, p) is a euclidean disk D(c,r) = {z: |z —¢| < r}
where
1 — (tanh £)2

c= a 1~ laf*
"~ 1—(tanh £)?[a]?

1 — (tanh £)3[a}?’

- p
r = (tanh 2)

In particular, we have Dy(0, p) = D(0,tanh §).

In this paper we investigate some properties of uniformly locally univalent func-
tions. We establish a characterization of uniformly locally univalent functions and
give a necessary and sufficient condition for a holomorphic universal covering pro-

jection to be uniformly locally univalent.

2. Uniform local univalence

Becker [3] proved that if f is holomorphic and locally univalent in D, and if

fll (z)

f'(2)

<1

(1 -1z

for all z in D, then f is univalent in D. Let §(z) = dp(2) = dist(z,0D) =1 — |z|.
Note that §(z) is the radius of the largest disk in D with center z. The following
result is a slight modification of Becker’s univalence criterion.
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Lemma 1. Suppose f is holomorphic and locally univalent in D. If|f"(2)/f'(2)| <
MMAp(z) for all z € D, where M > %, then f is univalent in D(a,é(a)/4M) for
each a € D.

Proof. Let a € D and § = 6(a). Define h(z) = (f 0 g)(2), z € D, where w = g(2) =
02/4M + a. Then

W) = ) W) = ( g3z ) w)

so that , ) .
(hunﬂy=cﬂ%%ww>ﬁzﬂﬁ
! )
= 0 - Pl - o) |22

for all z in D. Note that § + 4M|w —a] <2fand § —4M|w —a| <6 —|lw—a| <
1—|w| <1 |w® By hypothesis, (1 — [w|?)|f"(w)/f'(w)| < 2M. So, by (1),
we have (1 — |2])?|h”(2)/Rh'(z)| < 1. Hence, by Becker’s univalence criterion, h is
univalent in D, so f = hog~! is univalent in D(a,d/4M). O

Let S be the class of normalized schlicht functions in D. That is, f € §if f is
univalent and holomorphic in D with the development f(2) = z4+a22°+-s+a,2"+-s.
It is well known that if f € S, then |a,| < n for n = 2,3,4,s. Let f be a locally
univalent holomorphic function on D and let T' € Aut(D), the group of conformal
automorphisms of D. The Koebe transform fr of f is defined by

£(T() - #(T(0)

&= "raeire

For T'(z) = (z + a)/(1 + @z), we have

(0
£'(0)

We now establish a characterization of uniformly locally univalent functions.

fT(O) = O’ fé‘(o) = 1) f’_'lli(o) (1 - |al ) — 2a.

Theorem 2. A locally univalent holomorphic function f defined on D is uni-
formly locally univalent if and only if there exists a constant M > i such that

|F"(2)/f'(2)] < MAp(z) for all z € D.

Proof. First, suppose that f is uniformly locally univalent. Then there exists a
constant p > 0 such that f is univalent in each hyperbolic disk Dy(a, p),a € D. Let
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r = tanh(p/2). Then

rz+a _ -1 -1
dh(1+arz,a)—2tanh r|z| < 2tanh™ r=p, z€ D.

This yields T(rz) € Dgp(a,p),z € D, where T(z) = (2 + a)/(1 + az). Let g(z) =
% fr(rz), where fr is the Koebe transform of f. Then g is univalent in D, g(0) =
0,9'(0) =1, and

q"(0) =r(1 - |a|2)‘;;:((§—)) — 2ar.

Since g € 8, the class of normalized schlicht functions, we obtain |g"(0)] < 2.

Therefore, we have

g"(0) + 2ar
r(1-lal?)

’f”(a) < MXp(a),

f'(a)
where M = (1 +7)/r > 1. Next, suppose that there exists a constant M > % such

that |f"(2)/f'(z)| < MAp(z) for all z € D. Then, by Lemma 1, f is univalent in
D(a, é(a)/4M) for each a € D. Let s € (0, gkr) and p = 2tanh™'s. Then we have

Lol _ 25— e]) _ (1=le)(1+?e) _ 1 5( 1- s )

STl S T=a2? ~ AM (1 —s2e2)  4h \1=s2|cz¢

for each ¢ € D. This yields

1— s2 1 1—s2
———C, —— 0 ——5 '
Dh(cno) cD (1 _S2|c‘20’ 4M (1 "32|c|2c)>’ cev

This implies that f is univalent in Dp(c, p) foreach ce D. O

3. Holomorphic universal covering projections

A region 2 in the complex plane C is called hyperbolic if the complement of
with respect to C contains at least two points. If a region € is hyperbolic, then,
by the uniformization theorem [1, p. 142], there exists a holomorphic universal
covering projection ¢ of D onto Q. The collection of all holomorphic universal
covering projections of D onto € consists of functions ¢ o T, where T € Aut(D).
The density Aq(z) of the hyperbolic metric Aq(z) |dz| on a hyperbolic region  is

obtained from
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Aa(e(2)le'(2) = Ap(2),

where ¢ is any holomorphic universal covering projection of D onto §2. The density
of the hyperbolic metric is independent of the choice of the holomorphic universal

covering projection since
2T'(z)| _ 2
1= [T)P 1~ 122

for any T € Aut(D).

Theorem 3. Let ¢ be a holomorphic universal covering projection of D onto a
hyperbolic region Q. If Q is simply connected, then p(¢) = co.

Proof. By the Riemann Mapping Theorem, there exists a univalent mapping f of D
onto . Since the collection of all holomorphic universal covering projections of D
onto ) consists of the functions ¢ o T, where T' € Aut(D), it follows that f = poT
for some T € Aut(D). This yields ¢ = f o T~; hence ¢ is univalent in D. Thus,

we have

D (0, tanh -'?—(2£)> = Dy (0, p(¢)) = D.

This yields p(¢) =oc0. O

Uniform local univalence is closely related to the concept of uniform perfectness.
For a hyperbolic region Q2 and z € Q let 6n(2) denote the euclidean distance from
z to the boundary of 2. For an arbitrary hyperbolic region 1 there is a simple
relationship between \q(z) and dq(z), namely Aq(z)da(z) < 2 [5, p.45]. On the
other hand, for any simply connected hyperbolic region 2, we have % < Aa(z)da(z)
[5, p. 45]. For an arbitrary hyperbolic region 2 there does not exist a positive
constant ¢ = ¢(Q) such that ¢ < Aq(z)dq(2). For instance, if @ = {z: 0 < |z| < R},
then

Aa(z) = S S

|2| log(R/|21)
and da(z) = |2| for 0 < |2| < & so that Aq(2)dn(2) — 0 as z — 0. A hyperbolic
region ( is called uniformly perfect if there exists a positive constant ¢ = ¢(2) such
that ¢ < Aq(2)dq(z) for all z in . Pommerenke [7] proved that a hyperbolic region
Q is uniformly perfect if and only if every holomorphic universal covering projection
@ : D — Q is uniformly locally univalent.



92 TAI SUNG SONG

The gradlent Vg(z) is the complex vector (a » By ) and its squared length is

ag|?

,VQIQ = |2z

Vgl =2 ’gg‘, where 5‘9; is the differential operator

ﬁ—l _2_2. =1+1
0z 2 \oz z3y 2=TT

Osgood [6] proved that a hyperbolic region €2 is uniformly perfect if and only if
there exists a constant ¢ > 0 such that |Vleg Aq(z)| < cAq(z) for all z in Q.
From the uniform perfectness criterion of Osgood [6] and Pommerenke [7], we

+ ‘gﬂ . If g is a real-valued differentiable function, then we have

obtain the following theorem. We establish a new proof of this theorem using
Theorem 2.

Theorem 4. Let w = ¢(z) be a holomorphic universal covering projection of D
onto a hyperbolic region Q. Then ¢ is uniformly locally univalent if and only if
there ezists a constant ¢ > 0 such that |V log Aq(w)| < cha(w) for all w in Q.

Proof. From the identity log Aq(w) = log Ap(2) — log|¢’(z)|, we obtain

) 1 (8 o"(2)
o) = 5 (g5 o000 - £55)

= 5o (P00 - 55

If ¢ is uniformly locally univalent, then, by Theorem 2, there exists a constant
M > 7 such that ‘Z#é)) < MAp(z) for all z in D. From (2), we obtain

(2)

1V log A(w)] = 2 |;3% logxa<w>]
I #'(2)
l¢'(2)] ¢'(2)

(1+M)|)‘,(( ))l (1+ M)a(w), we .

Next, suppose that there exists a constant ¢ > 0 such that |V log Aq(w)| < cAq(w)

ZAp (2) -

for all w in Q. From (2), we obtain

¢" (2)
¢'(2)

= [2A0(2) ~ 20/(2) o Tog Ao (w)]

< Ap(z) + [¢'(2)[|V log Aa(w)|
< Ap(z) + c|¢' (2)|Aa(w) = (L +c)Ap (2),z € D.




UNIFORMLY LOCALLY UNIVALENT FUNCTIONS 93

Hence, by Theorem 2, ¢ is uniformly locally univalent. (O
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