The Pure and Applied Mathematics 2 (1995), No 2, pp. 163-172 J. Korea Soc. of Math. Edu. (Series B)

FUZZY SEMI-INNER-PRODUCT SPACE

EUI WHAN CHO, YOUNG KEY KIM AND CHAE SEOB SHIN

ABSTRACT. G.Lumer [8] introduced the concept of semi-product space. H.M.El-Hamouly [7] introduced the concept of fuzzy inner product spaces.

In this paper, we defined fuzzy semi-inner-prodct space and investigated some properties of fuzzy semi product space.

1. Preliminaries

Definition 1.1 [1]. A fuzzy real number ζ is a nonascending, left continuous function from R into I = [0,1] with $\zeta(-\infty^+) = 1$ and $\zeta(+\infty^-) = 0$. The set of all fuzzy real numbers will be denoted by R(I). The partial ordering \geq on R(I) is the natural ordering of real functions. The set of all reals R is canonically embedded in R(I) in the following fashion, for every $r \in R$, we associated the fuzzy real number $\bar{r} \in R(I)$ which is defined by

$$\overline{r} = \begin{cases} 1 & \text{if } t \le r \\ 0 & \text{if } t > r \end{cases}$$

The set $R^*(I)$ of all nonnegative real numbers is defined by

$$R^*(I) = \{ \zeta \in R(I) : \zeta \ge \bar{0} \}.$$

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 47B99, 47A10. Key words and phrases. Fuzzy semi-inner-product, Fuzzy Pseudo-norm.

Definition 1.2 [5]. Let ζ , ξ be two fuzzy real numbers in R(I), and let s be any real number. Then

(i) Addition of fuzzy real numbers \oplus is defined on R(I) by

$$(\xi \oplus \zeta)(s) = \sup\{\xi(t) \land \zeta(s-t) : t \in R\}.$$

(ii) Scalar multiplication by a nonnegative $r \in R$ is defined on R(I) by

$$(r\xi)(s) = \begin{cases} \bar{0} & \text{if } r = 0\\ \xi(\frac{s}{r}) & \text{if } r > 0 \end{cases}$$

It is well known that the above two operations are well defined on R(I) and the canonical embedding of R in R(I) preserves these two operations. The results in the following proposition are well known.

Proposition 1.3 [4].

- (i) Addition and scalar multiplication preserve the order \geq on R(I).
- (ii) R(I) is closed under these two operations.
- (iii) For η , ζ and $\xi \in R(I)$, we have

$$\eta \oplus \xi \geq \zeta \oplus \xi \text{iff} \eta \geq \zeta.$$

Definition 1.4 [6]. Multiplication of two nonnegative fuzzy real numbers η , $\zeta \in R^*(I)$ is defined by

$$(\eta\zeta)(s) = \begin{cases} 1 & \text{if } s \leq 0 \\ \sup\{\eta(b) \land \zeta(\frac{s}{b}) : b > 0\} & \text{if } s > 0, \end{cases}$$

where $s \in R$. it is shown in [6] that $R^*(I)$ is closed under multiplication.

Definition 1.5 [2]. A fuzzy pseudo-norm on a real of complex space X is a function $\| \| : X \to R^*(I)$ which satisfies the following two conditions; for $x, y \in X$ and s in the field

- (i) ||sx|| = |s|||x||,
- (ii) $||x + y|| \le ||x|| \oplus ||y||$.

The algebraic properties of addition and nonnegative scalar multiplication on $R^*(I)$ enable us to embed $R^*(I)$ in the smallest real vector space M(I) as follow.

Definition 1.6 [3]. The set M(I) is the cartesian product $R^*(I) \times R^*(I)$ modulo the equivalence relation \sim defined by

$$(\eta,\zeta)\sim(\xi,\lambda)$$
 iff $\eta\oplus\lambda=\zeta\oplus\xi.$

The partial order \geq on M(I) is defined by

$$(\eta, \zeta) \ge (\xi, \lambda)$$
 iff $\eta \oplus \lambda \ge \zeta \oplus \xi$.

The set $M^*(I)$ is defined by

$$M^*(I) = \{(\eta, \zeta) \in M(I) : (\eta, \zeta) \ge \overline{0}\}$$
$$= \{(\eta, \zeta) \in M(I) : \eta \ge \zeta\}$$

 $R^*(I)$ is canonically embedded in M(I) by representing each $\eta \in R^*(I)$ as $(\eta, \bar{0}) \in M(I)$. Also R is embedded in M(I) as follows: for $r \in R$, r is identified with $(\bar{r}, \bar{0}) \in M(I)$ if $r \geq 0$ and with $(\bar{0}, (\bar{-r})) \in M(I)$ if r < 0.

Addition \oplus and real scalar multiplication are defined on M(I) by :

$$(\eta,\zeta)\oplus(\xi,\lambda)=(\eta\oplus\xi,\zeta\oplus\lambda), \qquad (i)$$

$$t(\eta,\zeta) \begin{cases} (t\eta,t\zeta) & \text{if } t \ge 0\\ (|t|\zeta,|t|\eta) & \text{if } t < 0. \end{cases}$$
 (ii)

THeorem 1.7 [3]. The above addition and scalar multiplication are well defined on M(I). Under these twooperations, M(I) is the smallest real vector pace including $R^*(I)$. In patricular, the canonical embedding of $R^*(I)$ into M(I) preserves addition and nonnegative scalar multiplication, while the canonical embedding of R into M(I) is a vector space embedding.

Definition 1.8 [3]. The N-Euclidean norm on M(I) is the fuzzy pseudo-norm || || defined by : for $(\eta, \zeta) \in M(I)$,

$$|\lfloor (\eta, \zeta) \rfloor| = \inf\{\xi \in R^*(I) : \xi \ge (\zeta, \eta) \text{ and } \xi \ge (zeta, \eta)\}$$
$$= \inf\{\xi \in R^*(I) : \xi \oplus \zeta \ge \eta \text{ and } \xi \oplus \eta \ge \zeta\},$$

where $\xi = (\xi, \bar{0})$ according to the embeding of $R^*(I)$ in M(I).

Definition 1.9 [4]. A real algebra X with a fuzzy pseudo-norm $\| \|$ on X will be called a fuzzy pseudo-norm algebra if for all $x, y \in X$,

$$||xy|| \leq ||x|| ||y||,$$

where multiplication in the right-hand side is the fuzzy multiplication on $R^*(I)$.

Definition 1.10 [4]. Multiplication on M(I) is defined by: for $(\eta, \zeta), (\xi, \lambda) \in M(I)$,

$$(\eta,\zeta)(\xi,\lambda)=(\eta\xi\oplus\zeta\lambda,\eta\lambda\oplus\zeta\xi).$$

Theorem 1.11 [4].

- (i) Multiplication on M(I) is well defined.
- (ii) The canonical embeddings of $R^*(I)$ and R into M(I) preserve multiplication.
- (iii) Underaddition, scalar multiplication, M(I) is a real associative and commutative algebra with unit element $\bar{1} = (\bar{1}, \bar{0})$.

- (iv) M(I) is not an integral domain.
- (v) (M(I), || ||) is a fuzzy pseudo-normed vector space and is a fuzzy pseudo-normed algebra under its multiplication.

Definition 1.12. Let U be a fuzzy subset of a universe X and let $\alpha \in I_1 = [0,1)$. The α -cut of U is the crisp subset of X

$$U^{(\alpha)} = \{x \in X : U(x) > \alpha\}.$$

Fuzzy real numbers in $R^*(I)$ can be considered as fuzzy subsets of the set R^* of all nonnegative reals. Therefore, for each $\eta \in R(I)$, its α -cut $\eta^{(\alpha)} = [0,t)$ or = [0,t], where $t = \bigvee \{x \in R : \eta(x) > \alpha\}$ is uniquely identified with the number t. It is obvious that α -cuts preserve the three operations on $R^*(I)$ and order on $R^*(I)$ in the following sense: for every $\eta, \zeta \in R^*(I), \alpha \in I_1$, and $r \geq 0$ we have

$$(\eta \oplus \zeta)^{(\alpha)} = \eta^{(\alpha)} + \zeta^{(\alpha)} \tag{i}$$

$$(r\eta)^{(\alpha)} = r\eta^{(\alpha)} \tag{ii}$$

$$(\eta\zeta)^{(\alpha)} = \eta^{(\alpha)}\zeta^{(\alpha)}$$
 (iii)

$$\eta \le \zeta \text{ iff } \eta^{(\alpha)} \le \zeta^{(\alpha)}, \forall \alpha \in I_1.$$
(iv)

Proposition 1.13 [4].

- (i) For $(\eta, \zeta) \in R^*(I)$, $\eta^2 < \zeta^2$ iff $\eta < \zeta$.
- (ii) For every $\eta \in R^*(I)$, there exists a unique square root ξ in $R^*(I)$ such that $\xi^2 = \eta$.
- (iii) For $(\eta, \zeta) \in M(I)$ we have $(\eta, \zeta)^2 \in M^*(I)$.

(iv) For $(\eta, \zeta) \in M(I)$ we have $||(\eta, \zeta)^2|| = ||(\eta, \zeta)||^2$.

2. Fuzzy Semi-Inner-Product Space

In this section, we will define the fuzzy semi-inner-product and establish some properties that goes with it. First we introduce the notation of the α -cuts of the fuzzy real numbers to M(I).

Definition 2.1. Let $(\eta, \zeta) \in M(I)$ and $\alpha \in I_1$. We define the α -cut of (η, ζ) to be the real number

$$(\eta,\zeta)^{(\alpha)} = \eta^{(\alpha)} - \zeta^{(\alpha)}.$$

Proposition 2.2 [7].

- (i) The α -cut $(\eta, \zeta)^{(\alpha)}$ is well-defined on M(I).
- (ii) $(\eta, \zeta) = (\xi, \lambda)$ in M(I) iff they have the same indexed family of α -cuts,
- (iii) $(\eta, \zeta) \in M^*(I)$ iff $\forall \alpha \in I_1, (\eta, \zeta)^{(\alpha)} \geq 0$.

Proposition 2.3 [7]. For each fixed $\alpha \in I_1$, taking α -cuts is an order preserving real algebra homomorphism from M(I) onto R.

Definition 2.4. A fuzzy semi-inner-product on a unitary M(I)-modulo X is a function $\cdot: X \times X \to M(I)$ which satisfies the following three axioms;

- (F_1) · is linear in one component only.
- (F_2) $x \cdot x > \bar{0}$ for every nonzero $x \in X$.
- (F_3) $|\lfloor x \cdot y \rfloor|^2 \le (x \cdot x)(y \cdot y)$ for every $x, y \in X$

The pair (X, \cdot) is called a fuzzy semi-inner-product space. The fuzzy pseudo-norm $\| \|$ associated with (X, \cdot) is the function $\| \| : X \to R^*(I)$ defined for all $x \in X$ by $\|x\| = |\lfloor x \cdot x \rfloor|^{\frac{1}{2}}$ with values in $R^*(I)$. We write $(X, \cdot, \| \|)$ to show that the norm $\| \|$ is the function thus derived from the fuzzy semi-inner-product.

Let us new define the real quadratic form $<,>_{\alpha}: X\times X\to R$ for every $x,y\in X, \alpha\in I_1$ fixed, by $< x,y>_{\alpha}=(x\cdot y)^{(\alpha)}$.

Lemma 2.5. If for $\alpha \in I_1$ and $x \in X, (x \cdot x)^{(\alpha)} = 0$, then $(x,y)^{(\alpha)} = 0$ for all $y \in X$.

Proof. By (F_3) , we obtain $|\langle x,y \rangle_{\alpha}|^2 \le \langle x,x \rangle_{\alpha} < y,y \rangle_{\alpha}$. This yields $((x\cdot y)^{(\alpha)})^2 \le (x\cdot x)^{(\alpha)}(y\cdot y)^{(\alpha)}$. If $(x\cdot x)^{(\alpha)}=0$ for some $\alpha \in I_1$, then $(x\cdot y)^{(\alpha)}=0$ for all $y\in X$.

Proposition 2.6. If $(\eta, \zeta) \geq (\xi, \lambda)$ in $M^*(I)$, then $|\lfloor (\eta \zeta) \rfloor| \geq |\lfloor (\xi, \lambda) \rfloor|$ in $R^*(I)$.

Proof. Since $(\eta, \zeta) \in M^*(I)$, then $\theta \geq (\zeta, \eta)$ for all $\theta \in R^*(I)$. From the properties of the infimum and Definition 1.8, we have

$$\begin{aligned} |\lfloor (\eta \zeta) \rfloor| &= \inf \{ \theta \in R^*(I) : \theta \ge (\eta, \zeta) \} \\ &\ge \inf \{ \theta \in R^*(I) : \theta \ge (\xi, \lambda) \} \\ &= |\lfloor (\xi, \lambda) \rfloor|. \end{aligned}$$

In the following proposition, we will denote the elements of the ring M(I) by just a single letter.

Proposition 2.7. Let $x, y \in M^*(I)$ be such that $y^{(\alpha)} = 0$ whenever $\alpha \in I_1$ satisfies $x^{(\alpha)} = 0$. Then for all $z \in M^*(I)$ we have $xz \geq xy$ iff $z \geq y$.

proof. $xz \geq xy$ iff $(xz)^{(\alpha)} \geq (x,y)^{(\alpha)}, \forall \alpha \in I_1$. Using the properties of α -cuts on M(I), we have $x^{(\alpha)}, y^{(\alpha)}, z^{(\alpha)} \geq 0$, and $x^{(\alpha)}z^{(\alpha)} \geq x^{(\alpha)}y^{(\alpha)}$. If $x^{(\alpha)} \neq 0$, then $z^{(\alpha)} \geq y^{(\alpha)}$. If $x^{(\alpha)} = 0$, then $y^{(\alpha)} = 0$, and hence $z^{(\alpha)} \geq y^{(\alpha)}$. Since this holds for all $\alpha \in I_1$, then we conclude that $z \geq y$.

Theorem 2.8. Let $(x, \cdot || \cdot ||)$ be a fuzzy semi-inner-product space. Then, considering X as a real vector space, $|| \cdot ||$ is indeed a fuzzy pseudo-norm on X. It also satisfies:

- (i) $||x|| > \bar{0}$ for every nonzero $x \in X$, and
- (ii) $\|(\eta,\zeta)x\| \le |\lfloor (\eta,\zeta)\rfloor| |x||$ for all $x \in X$ and $(\eta,\zeta) \in M(I)$.

Proof. $||tx||^2 = |\lfloor tx \cdot tx \rfloor| = t|\lfloor x \cdot tx \rfloor| \le |t| |x|| |tx||$. Thus $||tx|| \le |t| |x||$. For $\lambda \ne 0$, $||x|| = ||\frac{1}{t}tx|| \le \frac{1}{|t|} ||tx||$, $|t| ||x|| \le ||tx||$. Therefore ||tx|| = |t| ||x||, $\forall x \in X, t \in R$. Also,

$$||x + y||^{2} = |\lfloor (x + y) \cdot (x + y) \rfloor|$$

$$= |\lfloor x \cdot (x + y) \rfloor| + |\lfloor y \cdot (x + y) \rfloor|$$

$$\leq ||x|| ||x + y|| + ||y|| ||x + y||$$

$$= (||x|| + ||y||) ||x + y||.$$

Then $||x + y|| \le ||x|| + ||y||, \forall x, y \in X$

Hence $\| \|$ is a fuzzy pseudo-norm on X.

To prove (i), let $x \in X$ be a nonzero element in X. Then $x \cdot x > \overline{0}$ in M(I) and hence $||x|| = |\lfloor x \cdot x \rfloor|^{\frac{1}{2}} > \overline{0}$ in $R^*(I)$.

To prove (ii), let $(\eta, \zeta) \in M(I)$, then

$$\begin{aligned} \|(\eta,\zeta)x\|^2 &= |\lfloor (\eta,\zeta)x \cdot (\eta,\zeta)x \rfloor| \\ &= |\lfloor (\eta,\zeta)^2(x,x) \rfloor|. \end{aligned}$$

But, since $(M(I), |\lfloor \rfloor|)$ is a fuzzy pseudo-normed algebra (Theorem 1.11(v)), then

$$\begin{aligned} |\lfloor (\eta, \zeta)^2 (x \cdot x) \rfloor| &\leq |\lfloor (\eta, \zeta)^2 \rfloor ||\lfloor (x \cdot x) \rfloor| \\ &= |\lfloor (\eta, \zeta) \rfloor|^2 |\lfloor (x \cdot x) \rfloor| \\ &= |\lfloor (\eta, \zeta) \rfloor|^2 ||x||^2, \end{aligned}$$

where the first equality is true by Proposition 1.13 (iv).

Due to the fact that the square roots exist and are unique in $R^*(I)$, we obtain by Proposition 1.13 (i),

$$||(\eta, \zeta)x|| \le ||(\eta, \zeta)|| |x||.$$

Proposition 2.9. Let $\{(X_i, \cdot_i, || ||_i) : i = 1, 2, \dots, n\}$ be a finite indexed family of fuzzy semi-inner-product spaces, and let $X = \prod X_i = \{(x_1, x_2, \dots, x_n) : x_1 \in X_1, x_2 \in X_2, \dots, x_n \in X_n\}$ be the product module of the X_i 's (under coordinate-wise operations). Define the function $\cdot : X \times X \to M(I)$ by for $x = (x_i)$ and $y = (y_i)$ in X,

$$x \cdot y = \bigoplus_{i=1}^{n} x_i \cdot y_i.$$

Then this function \cdot is a fuzzy semi-inner-product on X.

Proof. The proof is straightforward from the properties of each fuzzy semi-inner-product \cdot_i and the properties of fuzzy summation.

REFERENCES

- 1. B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. 50 (1975), 74-79.
- 2. A.K. Katsaras, Linear fuzzy neighborhood spaces, Fuzzy Sets and Systems 16 (1985), 25-40.
- 3. A.S. Mashhour and N.N. Morsi, Fuzzy metric neighborhood spaces, Fuzzy Sets and Systems 50 (1992), 33-44.
- 4. N.N. Morsi and S.E. Yehia, Continuity of fuzzy multiplication in the N-euclidean spaces, Fuzzy Sets and System 55 (1993), 21-30.
- S.E. Rodabaugh, Fuzzy addition in the L-fuzzy real line, Fuzzy Sets and Systems 8 (1982), 39-52.
- 6. S.E.Rodabaugh, Complete fuzzy topological hyperfields and fuzzy multiplication in the L-fuzzy real line, Fuzzy Sets and systems 15 (1985), 285-310...
- A.M. El-abyad and H.M. El-Hamouly, Fuzzy inner Product spaces, Fuzzy Sets and Systems 44 (1991), 309-326.

8. G.Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.

Department of Mathematics MyongJi University Yong-In 449-728, Korea