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ON THE ELLIPTIC EQUATION
Au + H(z)e* = 0 ON COMPACT MANIFOLDS

YOON-TAE JUNG, SEON-BU KiM AND CHEOLGUEN SHIN

1. Introduction

In this paper, we consider the existence of a solution to the elliptic nonlinear

partial differential equation

Au+ H(z)e" =0 (H #£0) (1)

on a compact manifold without boundary. This equation is related to the prob-
lem of a pointwise conformal deformation of metrics on two dimensional compact
connected manifolds.

Let (M, ¢g) be a Riemannian manifold of dimension 2 and K(z) be a given function
on M. Then one may ask the following question: Can we find a new metric g; on
M such that K(z) is the Gaussian curvature of g; and g; is pointwise conformal to
g (i.e., there exists a function u(z) on M such that g; = e?*g )? If M admits k(z)
as the Gaussian curvature of g, then this is equivalent to the problem of solving the

elliptic equation

Au — k(z) + K(z)e®* =0, (2)
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where A is the Laplacian in the g-metric (cf.[Av.], [C.L.], [H.], [H.T.], [K.W.2,3],

[M.2], etc.).
Let v be a solution of Av = k(z) - k(z) (cf.Lemma 1), where k(z) =
ﬁl\T) J3g k(z)dV is the average of k(z), and let w = 2(u — v). Then w satisfies

Aw = 2k(z) - (2Ke?®)e”. (3)

It turns out that the equation (3) is easier to analyze if we free it from geometry

and consider instead

Au —c+ H(z)e" =0, (4)

where H(z) is some prescribed function and ¢ is a constant. The equation (1) is
the case with ¢ = 0.

In case of noncompact 2-dimensional manifolds, it follows from the uniformization
theorem that every noncompact Riemannian surface is conformal to a complete
Riemannian surface of constant Gaussian curvature k = 0 or k = —1. In the
case that (M,g) is conformal to the flat Euclidean plane R?, the equation (1)
has been studied extentively by P.Aviles ([Av.]), K.S.Cheng and W.M.Ni ([C.N.}),
R.McOwen ([M.1,2]), D.H.Sattinger ([S.]), etc. In the case that (M, g) is conformal
to the hyperbolic disc H? with k& = —1, the equation (4) with —c > 0 has been
studied by J.Bland and M.Kalka ([B.K.]), D.Hulin and M.Troyanov ([H.T.]), etc.

In case of compact 2-dimensional manifolds, it follows from Gauss-Bonnet theo-
rem that the c-value admits negative, zero, or positive. According to the c-values,
the equation (4) has been studied by J.L.Kazdan and F.W.Warner ([K.W. 2,3]),
X.Xu and P.C.Yang ([X.Y.]), K.S.Cheng and J.A.Smoller([C.S.]), W.Chen and
W.Ding ([C.D.]), Z.C. Han ([H.]), etc. In case of compact 2-dimensional mani-
folds, the above almost authors studied the case that c is nonzero, in particular, on
the usual sphere S2.
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In [K.W.3], J.L.Kazdan and F.W.Warner have studied the necessary and suf-
ficient conditions of the solvability of (1) on two dimensional compact connected
manifolds. That is, a solution of (1) exists if and only if both H < 0 and H changes
sign (in case that H # 0). These necessary conditions must still be satisfied in
the n(> 3) dimensional case, too (cf. Theorem 3). J.L.Kazdan and F.W.Warner
conjectured that these two necessary conditions on H for the solvability of (1) on
M of dimension n(> 3) would be sufficient, much as in Theorem 5.3 of [K.W.1],

which is still an open problem ( Also see some open problems in [K.],p.47).

In this paper, we shall prove that they are also sufficient, i.e., the sufficiency ex-
tends to dim M > 3 on a compact manifold without boundary. In case of noncom-
pact n(> 3)- dimensional manifolds, the equation (1) has been studied by K.S.Cheng
and J.T.Lin ([C.L.]), K.Nagasaki and T.Suzuki ([N.S.]), H.Bellout ([B.]), etc.

And although throughout this paper, we will assume that all data (M, metric g,
and curvature, the given function, etc.) are smooth, this is merely for convenience.
Our proofs go through with little or no change if one makes minimal smoothness
hypotheses. For example, without changing any proofs, we need only assume that
the given function K(z) is Holder continuous. And for the existence of solutions
of the given equations, the above almost authors use the method of calculus of
variations. However, in this paper, for basic existence theorems, we use the method
of upper and lower solutions (See [K.W.1,2,3] or {C.H.], pp.370-371). The merit of
this method is that we can overcome the difficulty of critical Sobolev exponent ,
which implies the gap of Yamabe’s proof (cf.[A., p56,Ex.237,Ex.238],(T.],[J.]).

2. Main results

Let M be a compact connected n(> 3)-dimensional manifold, which is not nec-

essarily orientable and possesses a given Riemannian structure g. We denote the
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volume element of this metric by dV, the gradient by V, and the associated Lapla-
cian by A.
We let H, ,(M) denote the Sobolev space of functions on M whose derivatives

through order s are in Ly,(M). The norm on H, (M) will be denoted by || s,
The usual norm Lo(M) inner product will be written || ||

Lemma 1. Let (M,g) be a compact Riemannian manifold. There exists a weak
solution w € Hy 2(M) of Aw = f if and only if f = 0. The solution w is unique up

to a constant. Moreover, if f is smooth, then w is also smooth.
Proof. See Theorem 4.7 in [A.].

Lemma 2. Let H € L,(M) for some p > n = dimM. If there exist functions
uy,u— € Hy p(M) such that

Auy + H(z)e"t <0, Au_ + H(z)e"~ 20,

with u_ < uy, then there is a u € Hqp(M) satifying (1) and u_ < u < uy.

Moreover, u is smooth in any open set in which H(z) is smooth.

Proof. For detail, see Lemma 9.3 in [K.W.3] or Lemma 2.6 in [K.W.1] or a standard
argument in pp.370-371 in [C.H.].

Here u4 and u_ are called upper and lower (or super and sub) solutions of (1),

respectively.

Theorem 3. If a solution u of (1) exists and H # 0, then H must change sign and
H<O0.

Proof. By integrating both sides of (1) over M, we obtain that f,, He*dV = 0. Since
H # 0, H must change sign. To obtain the second result, observe that u = constant
cannot be a solution. Multiplying (1) by e™* and using an integration by parts over
M, we find that
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/ HdV = —/ e *AudV = —/ e™*|Vul?dV < 0.
M M M

Theorem 4. If (1) has a solution for given H and if Hy = mH for some constant
m > 0, then (1) has a solution for H,.

Proof. If u is a solution of (1) for H and m = €, then v = v — r is a solution of (1)
for H; = mH.

Theorem 5. [Existence of an upper solution| Let H(# 0) belong to C*°(M) such
that H changes sign and H < 0. Then there exists an upper solution uy > 0 of (1),
that is,

Auy + H(z)e*+ < 0.

Proof. Lemma 1 implies that there exists a solution w of Aw = H — H. We can

pick b > 0 so small that |eb¥ — 1| < «T{ffTﬁZ' Let e" = b. Put v = bw +r. Then

Av+ He’ = A(bw +r) + He?* "
= bAw + bHe"™
= bH + bH ("™ — 1)
< bH + bl H|oole"™ - 1]

gbﬁ—bf—f
4

3H
= b <0.
n <0

Thus vt = bw + r is an upper (weak) solution of (1).
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From the above theorem, if H < 0, then we can always have an upper solution
of (1). Hence in order to show that (1) has a solution, it suffices to find a lower
(weak) solution u_ such that u_ < u4 and

Au_ + H(z)e*- > 0.

Now we consider the first eigenvalue of the differential operator Lu = ~Au— Hu,
that is,
. Vol||? - [ Hv?dV
A] = an-v¢0,v€H1,2(M) “ ” “’Ui/';

= inf.(||Vo]? - /Hv2dV) on{v € Hy (M), Jo]® = 1.

Note that the eigenfunction is never zero and smooth. In fact, since |Vv| = |V|v||
almost everywhere (See Proposition 3.69 in [A.]), the variational characterization
of A; shows that one can take v > 0, while the strong maximum principle shows
that v > 0. Thus the eigenspace has dimension 1 and we can assume that the
eigenfunction is positive.

Theorem 6. If H(z) changes sign, then the first eigenvalue of Lu = —Au —mHu

is negative for some large m > 0.

Proof. Since H changes sign and M is a compact manifold, there exists a smooth
nonnegative function u(z) on M such that u(z) is positive on some open ball in
{z € M|H(z) > 0} and u = 0 otherwise. Then, for sufficiently large m > 0,
IVu)|? — m [ Hu?dV < 0. Thus the first eigenvalue of Lu = —Au — mHu is

negative for sufficiently large m > 0.

Theorem 7. If the eigenvalue of Lu = —Au ~ mHu is negative for some m > 0,
then there exists a solution of (1) for mH, so by Lemma 4, there exists a solution

of (1) for H.
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Proof. We have sevaral steps to prove. They are similar to the proof in Theorem
7 in [J.]. So for detail, cf. Theorem 7 in [J.] and here we sketch the outline of the
proof.

Step 1. Since mH < 0, Theorem 5 implies that there exists an upper solution
uy of (2) for mH.

Step 2. Now we have only to show that there exists a lower solution u_ < u4 of

(1) for mH. Let f > 0 be a corresponding eigenfunction of L, that is,

Af +mHf = —Mf, f > 0. (5)

Since cf is also an eigenfunction of (5), we can assume that f > 1. Now put
v=>b(f T e ")+ 4 t, where r is a sufficiently small positive real number and b

and t are chosen suitably so that our conditions are satisfied. Then

Vo= b(r? +r)(f7 —e )T IV

and

T f’2 2
Fgm NV AP

2 r? —r\L il r2-1
Av=b(r* +7r)(fT —e ") f [Af+{ 7 +
Hence for et = b(r2 + r)(1 —e™")7,

Av+mHe®

r

7=

2 12 2 _ r?
=0+ —e A 4 e
P ()

fv'2 — e~

e—r)1+‘,1.

'p=

+ mHe"(frz"

]

A NP

2 1 2 1"2 —_
S GR D E  CW R G Ly

P2_-myitd 2 1—e7"
+me{eb(f ) fr (F_—e——r r —1}]
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l—e™ 2
For sufficiently small r > 0, (f—,——e—)F —1 as r — 40 and
re __ e—r
2 __ 1 r? =\
=l S o ZM Therefore, pick b > 0 so small that u_ < s
f fri—er f 2

and

b(frz_e—r)l'l'% —r2 1—-e " % 1< —Al
e T e

Then u_ is our desired lower solution of (1).

[Remark ]. [1) When M is of dimension 2, Kazdan and Warner proved the existence
of solution of (1) using the calculus of variation ( See Theorem 5.3 in [K.W.1]). As
we see, their proof depends on the dimension of the given manifold. However, our
proof does not depend on the dimension of the given manifold. So this result can
be applied to the case of dimension 2.

[2] By the proofs of Theorem 5 and Theorem 7, we can see that there exist many
solutions of (1) if H(z) changes sign and H < 0. In particular, we can also see
that when the given manifold of dimension 2 admits zero total Gaussian curvature,
there exist many conformal metrics with K(z) as the Gaussian curvature if K(x)

changes sign and K < 0.

Corollary 8. On compact manifolds, a solution of Au+ H(z)e™* = 0, where H # 0

and c is a positive constant, exists if and only if both H < 0 and H changes sign.
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