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PRETOPOLOGICAL CONVERGENCE QUOTIENT MAPS

SANG Ho PARK

1. Introduction

A convergence structure defined by Kent {4] is a correspondence between the
filters on a given set X and the subsets of X which specifies which filters converge
to points of X. This concept is defined to include types of convergence which are
more general than that defined by specifying a topology on X. Thus, a convergence
structure may be regarded as a generalization of a topology.

With a given convergence structure ¢ on a set X, Kent [4] introduced associated
convergence structures which are called a topological modification and a pretopo-
logical modification.

Also, Kent [6] introduced a convergence quotient map, which is a quotient map
for a convergence space.

In this paper, we introduce notions of pretopological convergence quotient maps
and topological convergence quotient maps, and investigate some properties on
them.
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2. Preliminaries

A convergence structure q on a set X is defined to be a function from the set
F(X) of all filters on X into the set P(X) of all subsets of X, satisfying the following
conditions:

(1) z € ¢(2) for all z € X;

(2) ® C ¥ implies ¢(®) C ¢(¥);

(38) = € ¢(®) implies z € ¢(® N ),
where  denotes the principal ultrafilter containing {z}; ® and ¥ are in F(X).
Then the pair (X, q) is called a convergence space. If z € ¢(®), then we say that
® g-converges to z. The filter V(z) obtained by intersecting all filters which ¢-
converge to z is called the g-neighborhood filter at x. If Vg(z) g-converges to z
for each z € X, then ¢ is said to be pretopological and the pair (X, q) is called a
pretopological convergence space.

A convergence structure ¢ is said to be topological if ¢ is pretopological and for
each z € X, the filter V,(z) has a filter base By(z) with the following property:

y € G € By(z) implies G € By(y).

In this case, the pair (X, q) is called a topological convergence space.

Let C(X) be the set of all convergence structures on X, partially ordered as
follows:

g, <q, & ¢,(®) Cq,(®) for all ® € F(X).

If ¢, <gq,, then we say that ¢, is coarser than ¢,, and g, is finer than ¢,. By (5],

we know that if ¢, is pretopological, then

,Lq, = Vi (z)CVg(z)forallzeX.
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Let (X, ¢) be a convergence space. Then
(@) ={UCX|U€Vy(z) for all z € U}

is said to be the topology induced by a convergence structure gq.
While, let (X, 7) be a topological space and N(z) the neighborhood system at
z € X with respect to given topology 7. Then the convergence structure ¢(7)

induced by 7 is defined as follows:

z€c(r)(®) <= N(z)Co.

for each & € F(X). Then, ¢(7) is a topological convergence structure on X.

For any ¢ € C(X), we define the following related convergence structures, 7(¢),
and A(q):

(1) z € w(g)(®) iff V(2) C &.

(2) z € Mg)(®) iff Uy(x) C ®, where Uy(z) is the filter generated by the sets
U € V,(z) which have the property: y € U implies U € V,(y). In this case, 7(q)
and A(q) are called the pretopological modification and the topological modification
of ¢, and the pairs (X, 7(¢)) and (X, A(¢)) are called the pretopological modification
and the topological modification of (X, q), respectively.

Let (X, ¢) be a convergence space and N(z) the neighborhood system at 2 € X
with respect to the topology 7(g).
Since Uy(z) = Vy(g)(z) = N(x), we know that

AMg) = c(1(9)), 7(Mg)) =7(g), N(z) C Vy(z).
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Proposition 1([4]). (1) =(q) is the finest pretopological convergence structure
coarser than q.

(2) \(q) is the finest topological convergence structure coarser than q.
(3) Mg) <m(g) < 4.

Let f be a map from X into Y and & a filter on X. Then f(®) means the filter
generated by {f(F) | F € ®}.([1))

Let f be a map from a convergence space (X, ¢) to a convergence space (Y, p).
Then f is said to be continuous at a point z € X, if the filter f(®) on Y p-converges
to f(z) for every filter ® on X g-converging to z. If f is continuous at every point
z € X, then f is said to be continuous.

Let ¢ and ¢' be in C(X), and p and p' in C(Y). Then, we know that if ¢ < ¢/,
p > p and f:(X,q) — (Y,p) is continuous, then f:(X,q') — (Y,p') is continuous.

Proposition 2 ([6]). (1) If f:(X,q) — (Y,p) is continuous at = € X, then
Va(f(2)) C f(Vy(2)).
(2) If p is pretopological and V,(f(z)) C f(V,(z)), then f:(X,q) — (Y,p) is

continuous at z € X.

Proposition 3. Let (X,q) and (Y, p) be convergence spaces. Then, f:(X,(q)) —
(Y, X(p)) is continuous if and only if f:(X,71(q)) — (Y, 7(p)) is continuous.

Proof. The proof is clear from V) (f(z)) = N(f(z)) and V(4 (=)
= N(z) for each z € X, where N(z) and N(f(z)) are the neighborhood systems at
z and f(z) with respect to 7(¢) and 7(p), respectively.

Proposition 4. If f:(X,q) — (Y, p) is continuous, then
(1) f:(X,=(q)) — (Y,w(p)) is continuous.
(2) f:(X,M(q)) — (Y, X(p)) is continuous.

Proof. (1) Let ® € F(X)and z € n(q)(®). Then Vy(z) C ®. Since f:(X,q) — (Y,p)
is continuous at z, Vo(f(z)) C f(Vy(z)) C f(®). Thus, f(z) € n(p)(f(®)). This
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completes the proof.

(2) By Proposition 3, it is sufficient to show that f:(X,7(q)) — (Y,7(p)) is
continuous. Let U € 7(p) and z € f~!(U). Then f(z) € U and U € N(f(z)) C
Vo(f(z)). Since f:(X,q) — (Y,p) is continuous, U € f(V¢(z)). Thus, f~1(U) €
V,(z) and f~1(U) € 7(g). This completes the proof.

Let (X, q) be a convergence space, Y a nonempty set, and a map f:(X,q) - Y
a surjection. The convergence quotient structure p on Y is the finest convergence
structure on Y relative to which f is continuous. In this case, f:(X,q) — (Y,p) is
called a convergence quotient map and the pair (Y, p) is called a convergence quotient

space.

Proposition 5([6]). If f:(X,q) — (Y,p) is a convergence quotient map, then, for
eachy €Y, Vp(y) = N{f(Vy(2)) | z € f~'(y)}-

3. Main Results

A surjection f: (X, q) — (Y, p) is called a pretopological (resp. topological) conver-
gence quotient map if p is the finest pretopological (resp. topological) convergence

structure on Y relative to which f is continuous.

Theorem 6. Let f:(X,q) — (Y,p) be continuous. Then the following hold:

(1) If q is pretopological and for each y € Y there exists ¢ € f~!(y) such that
Vo(y) = f(V4(z)), then p is pretopological and f:(X,q) — (Y,p) is a convergence
quotient map.

(2) If p is pretopological and f:(X,q) — (Y,p) is a convergence quotient map,
then for each y € Y there exists z € f~1(y) such that Vy(y) = f(V4(z)).

Proof. (1) Suppose that for each y € Y, there exists z € f~(y) such that V,(y) =
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f(Vq4(z)). Since ¢ is pretopological, we obtain z € ¢(V4(z)). From the continuity
of f:(X,q) — (Y,p), we obtain y = f(z) € p(f(Vy(z))) = p(V3(y)) and so p is
pretopological.

Let f:(X,q) — (Y,r) be a convergence quotient map. Then p < r. While, let
¥ € F(Y) and y € p(¥). Then ¥ D V,(y) = f(Vy(z)) for some z € f~1(y).
Since z € q(V,(z)) and f:(X,q) — (Y,r) is a convergence quotient map, we obtain
y € r(¥). Thus p(¥) C r(¥) and so p > r. Finally, p = r. This completes the proof.

(2) Let y € Y. Since p is pretopological, we obtain y € p(Vp(y)). Since f:(X,q) —
(Y,p) is a convergence quotient map, there exist z € f~!(y) and & € F(X) such
that V,(y) D f(®) and z € ¢(®). Thus, Vg(z) C ® and so V;(y) D f(V,(z)). Since
f:(X,q) — (Y,p) is continuous, Vu(y) C f(Vg(z)). Finally, V,(y) = f(V,(z)). This

completes the proof.

Theorem 7. Let (Y,p) be pretopological and f:(X,q) — (Y, p) a surjection. Then
the following are equivalent:

(a) f:(X,q) — (Y,p) is a pretopological convergence quotient map.

(b) N{f(Vg(z)) | z € f~'(y)} = Vp(y) foreachy € Y.

Proof. (a) => (b): It is clear that f:(X,q) — (Y,p) is continuous. Let V(y) =
N{f(Vy(z)) | z € f~(y)} and define a convergence structure r € C(Y) as follows:

yer(¥) < V(y)Cv.

Since Vi(y) = N{¥ |y € (¥)} = n{¥ | V(y) C ¥} = V(y), we know that r
is pretopological. Since V.(y) = V(y) C f(V4(z)) for all z € f~(y), we obtain
that f:(X,q) — (Y,r) is continuous. Since f:(X,q) — (Y,p) is a pretopological
convergence quotient map, we obtain r < p. While, since f:(X,q) — (Y,p) is
continuous, Vp(y) C f(V,4(z)) for all z € f~1(y) and so V,(y) C N{f(V4(z)) |z €
Y )} = V(y) = Vi(y). Thus, V,(y) C Vr(y). Since p is pretopological, we obtain
that p < r and so p = r. This completes the proof.
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(b) => (a): By the hypothesis, we know that V,(y) C f(V4(z)) for each = €
f~Y(y). Since p is pretopological, we obtain that f:(X,¢) — (Y, p) is continuous.

Let r be pretopological and f: (X, q) — (Y,r) continuous. Then V,;(y) C f(V,(z))
for all z € f~1(y). Thus, Vi(y) C N{f(Ve(z)) | = € f~(y)} = Vp(y). Since r is
pretopological, we obtain r < p. This completes the proof.

Theorem 8. If f:(X,q) — (Y, p) is a convergence quotient map, then the following
hold:

(1) f:(X,q) = (Y,n(p)) and f:(X,7(q)) — (Y,n(p)) are pretopological conver-
gence quotient maps.

(2) f:(X,q) — (Y, X(p)) and f: (X, A(q)) — (Y, A(p)) are topological convergence

quotient maps.

Proof. (1) Since 7(p) < p, we know that f:(X,q) — (Y, n(p)) is continuous.

Let » € C(Y) be pretopological and f:(X,q) — (¥,r) continuous. We will
show that r < n(p). Let y € Y. Then Vi(y) C f(Vi(z)) for all z € f~'(y). By
Proposition 5, Vi.(y) C N{f(V4(2z)) | z € f~(y)} = Vp(y). Since r is pretopological,
r < p. Consequently, r < 7(p). and so f:(X,q) — (Y,7(p)) is a pretopological
convergence quotient map.

Also, by Proposition 4, f: (X, n(q)) — (Y, n(p)) is continuous. Thus, f:(X,n(¢)) —
(Y, w(p)) is a pretopological convergence quotient map. (2) The proof is similar to

(1).
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