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AN IMPLEMENTATION OF WEIGHTED L. — METRIC
PROGRAM TO MULTIPLE OBJECTIVE PROGRAMMING

JAE HAK LEE

1. Introduction

Multiple objective programming has been a popular research area since 1970.
The pervasiveness of multiple objective in decision problems have led to explo-
sive growth during the 1980’s. Several approaches (interactive methods, feasible
direction methods, criterion weight space methods, Lagrange multiplies methods,
etc) have been developed for solving decision problems having multiple objectives.
However there are still many mathematically challengings including multiple objec-
tive integer, nonlinear optimization problems which require further mathematically

oriented research.

In this paper, we give a method that is similar to the interval criterion weight/
vector maximum procedure. But, instead of using weighting vectors, we use weighted
Lo - metrics. This method enable us to compute unsupported and improperly
nondominated criterion vectors. Also, the results can be applied for an efficient

interactive procedure in multiple objective programming.

A formulation of multiple objective programming (M OP) is given by
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max fi(X) =2
(MOP) fa(X)=22 or max z=f(X)
subject to z € s
fie(X) =z
subject to z€S

where the objectives f; is real valued function, S is the decision space that is a
subset of R™. Here, the f; need not be linear and S need not be convex. But it is
assumed that each f; is bounded over S and that there does not exist a point in S

at which all objectives are simultaneously maximized.

To utilize the weighted Lo, - metric approach, we first compute a 2** ideal

*

criterion vector for (MOP). The ith component z}* of z** is given by

*% *
z, =z +¢€

where 2z} = sup{fi(X)|z € S} and €;> 0. In general, it suffices for each ¢; to be
positive. However, it is permissible for one or more of the ¢;’s to be zero. The only
time a given ¢; must be positive is either there is more than one criterion vector
that maximizes f; or there is only one criterion vector that maximizes f;, but this

criterion vector also maximizes one of the other objectives.

In the foliowing developments, Z denotes the criterion space and N denotes the

set of nondominated criterion vectors of (MOP).

2. Basic definitions

In this section, we quote some definitions which will be needed.
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Definition 2.1. Let A € A = {(A, A2, -, A € B¥[A; 2 0,55 A =1} be a

given weight vector. The weighted Lo, — metric with respect to X is given by

A — [ .
[z —wl||” = lrgygk{klzz w;l}

for z = (21,22,"' ,ZK),'LU = (w17w2"" ,’U)K) € Rk-

Note that if z** is an ideal criterion vector and Z is any vector in the criterion
space Z, only the lower left - hand portions of ||z** — 2||* contour can intersect Z.
Therefore, since we will only be using this metric to find points in Z closest to z**,

we can drop the absolute value sign in the above definition.

Definition 2.2.

(1) Let # < 2** and A € A\. Then % is a definition point of the ||z** — z||*
contour if and only if A = (A1, Az, , Ax) is defined by

3

Ai=1¢1 if z =2z (1)

-1
k e - .
——-_z‘."l—z',' (E =1 z;.l_z__) if z;#2; forallj

0 otherwise

(2) Let z < z**. Then, Z is a vertex of a give ||2** — z||* contour if and only
if Z is an extreme point of the closed convex set in R¥ whose boundary is
the contour.

(3) Let % be a definition point of a ||z** — z||* contour. Then the line segment
connecting z** with Z is the diagonal of the contour. A direction z — z**

is called a diagonal direction of the contour.

Note that if z is a definition point and z < 2z**. then z is the vertex of the
contour. A ||z** — %||* contour can have at most one vertex. when k > 2 and

the contour does not have a vertex, the contour has an infinite number of diagonal
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directions. However, when the contour has a vertex, its unique diagonal direction

(L it
WA

is given by

3. Weighted L., - metric Programs

We now formulate programs for finding the points in criterion space Z closest to
2** ideal criterion vector according to the weighted Lo, - metric. The weighted L

- metric program (W P), is given by

min«
(WP)x subject to  a > [[z** — 2|}
flz) =2
€S

The augmented weighted Lo, - metric program (AW P), , is given by

min{a + pel (2** — z)}
(AWP),, subject to  a > [|z** — z||*
f(z) ==
reSs

where p > 0 and €7 is the sum vector of ones.

Any solution to (WP) or (AW P), , is a vector of the form (%, %,&) € R*TF+!

where 7 is a closest criterion vector and Z is its inverse image in the decision space.
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For the sake of simplicity, let the decision space S be finite. Then, the set
of criterion space Z and, hence the set of nondominated criterion vectors N are
finite, Even if S is polyhedral set or infinite - discrete region, the arguments in the

followings are still valid.

We will show how each of the element in N is uniquely computable via the
(AW P),,,, that is , for each Z € N, we can find a A € A such that Z is the unique
optimal solution of the (AW P), ,.

The next theorem shows that among the optimal solution of the (W P),, we can

find at least one nondominated criterion vector.

Theorem 3.1. Let M = {z € Z|(z,2,a) is a minimal solution of (WP),} Then
MNN # ¢.

Proof. Since Z is finite, N # ¢. Let (Z,z,a) be a solution of (WP)x. O, the
contrary, suppose M NN = ¢. Let 2 be an element of M that is not dominated by
another element of M. If 2 ¢ N, then there exists a 2’ € N such that. 2/ > 2,2' # 2.

Since & is optimal value of (W P),, 2z’ € M, which is a contradiction.

For a given 2** ideal criterion vector for (MOP) and for a > 0, define

¢(a) = {z = (21,22, ,2K) € R¥|z; € [2}* — %,w), A >0}

Then, by finding the minimal a € R of the (W P),, we find the smallest (in a subset

sense) ¢(a) in the nested family of sets {¢#(a)}a>0 that intersect the criterion space

Z.

Lemma 3.2. Let ZP € N be a definition point of ||z** — zP||* contour. Then, there
does not exist z9 # zP such that z? € Z N ¢(ap,), where

app = ||2** — 2P| A



78 JAE HAK LEE

Proof. First, suppose zf # zj* for each j. Substituting for A; in each of the &

inequalities

app > /\j(z;* —-z;’), 1<j<k
we have

£ 1 1
Upp = z [zf* _ zp]
j=1 ©i j
=X(z;"—2F), 1<j<k

Hence

p_ _xx_ Ypp .
zj—z; ——/\T,quadISJSk

Since 2P € N, there does not exist a 29 # z? such that 2¢ € ¢(a,,) Now, assume
that for some i, 2 = z}*. Then A; = 0 for all j # ¢. Thus, ap, = 0. In this case,

$lapp) = {2 € R*|zi €[22, 00)}

Since zP € N, there does not exist a 29 # 2P such that 27 € ¢(ap,).

Lemma 3.3. Let z? € N be a definition point of ||z** — zP||* contour. Let 29 € Z

such that 29 # zP. Let a,q = ||2** — 29||*. Then a,p < ap,.

Proof. Sinc: 2P € N, by lemma 3.2, no other 27 € Z lies in d)(app) Thus, all

21 € Z(29 # 2?) lie in superset of ¢(a,p). Hence a,, < ayy.

Theorem 3.4. Let Iz = {i|2' € Z},Iny = {i]z' € N} and 2P € N be a definition

oint of ||z** — 2P||* contour. Then, z? uniquely minimizes (AW P), , where
p q v

0<p<q65m_n{p}{:‘:—1_—(—z—_——p)|2(z ——zp)>0} (2)
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Proof. From lemma 3.3, it is clear that there exist a p > 0 as (2). Suppose 27 €
Z, 2% # 2P minimizes (AW P)y ,. Then, a lower bound for the minimal value of the

objective function is
k
app + PZ(Z.” - z{).
i=1

The minimality of z? is preserved if

k k
Qpp +PZ(Z:* —2f) <apg + PZ(Z:* - z{).
=1 i=1

Since, app < apg, the optimality of z? can be violated only when

k k
St ) < S - o)
=1 i=1

or
k
Z(zf’ —2z)y>o.
=1

To assure the optimality of 2P, we must have

k
PZ(Z? —2) <apg—app
=1

for all g € I, — {p}.
Thus, it is suffices for p to be defined as (2) for z? to uniquely minimize (AW P), ,,

since A is defined as (1) in section 2.
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Theorem 3.5. Let Iz = {i|z' € Z},Iz = {i|z* € N} and let

0<p< 112}11\1, LGI,—{ N {—iftj;l—;—-lg(z, —z}) > 0}]

Then, 2? € N if and only if there exists a A € A such that 2P minimizes the
(AW P) p.

Proof. Suppose 2P € N. Let A be defined as (1) in section 2. Then it follows from
Theorem 3.4
To show the converse, suppose z? ¢ N minimizes the (AW P), , for some X € A.

Since z? is dominated by some other element 29,
(z** - zq) S (Z** — zp)

S0,
k k
pY (2" =z <pd (" - 2F)
i=1 i=1

Hence, z? would have a smaller objective function value than 2P, which is a contra-
diction. Thus, z? € N.

Remarks. Theorem 3.4 and Theorem 3.5 are also valid even if the decision space
S is a polyhedral set, since the contours of weighted Lo, - metric are piecewise
linear which implies N to be finite. For the case of nonlinear are infinite discrete
feasible region, we can modify the weighted Lo, - metric program slightly so that

these theorems are still valid.
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