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EXTENSION OF GANELIUS’ THEOREM

AE YOUNG PARK

1. Introduction

In this paper, we extend Ganelius’ lemma in Anderson [1]. In the Ganelius’
original version several of the a; are equal to 1, but in our extension theorem we
have the a; distinct and all unequal to 1. Then our theorem can be used to introduce
an indefinite quadrature formula for fil f(z)dz, f € HP, with p > 1.

We will also correct an error in the proof of Ganelius’ theorem provided in
Ganelius [2].

2. Extension theorem

Ganelius’ theorem [2] sharpens and extends Newman [5]’s result on rational ap-
proximation of |{z|. When we try to derive an indefinite quadrature formula using
the derivatives of integrand, we can not use the Ganelius’ lemma in Anderson [1]
because of the several multiple points equal to 1. Here we have an extension the-
orem of Ganelius’ lemma that does not have any multiple points. Moreover, all

points in the extension theorem are unequal to 1.

Typeset by AaS-TEX

95



96 AE YOUNG PARK

Theorem. Forr > 0 and N a positive integer, there are distinct numbersay,as, -+ ,an

in (0, 1) such that

< Cexp(—7VNr),

max z"
z€[0,1)

T+ ax
where C is an absolute constant.

Proof. We begin by rewriting the inequality in theorem as

>7VNr+rlogz~C (1)

r—a
k=1 k

and observing that the sum may be written as

[l
0

where dv is a discrete measure with unit masses at the points ax. In order to

dv(y),

determine such a; we introduce the continuous measure
0, it 0<y<1/p(n)
dii(y) 2 o
—log(yp(n))yldy i 1/e(n) <y <1l

Here n is a positive integer which we shall relate to N below, and ¢(n) = exp (7r L
”

We shall show that

/ log
0

We then introduce the discrete measure du(y) that has unit masses at the n 41

du(y)>7r\/_+rloga:————\/ﬁ_—c (2)

points

= o(k)/(n), for k=0,1,2,- ,n ~ 1, and yn = p(n ~ 2)/(n),
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and show that

1
/ log zty
0 T =

+
y‘du(y) f log | — z

’du(y) > ¢, 3)

Finally, we shall add n' additional points yx, for k=n+1,n+2,--- ,n +n', with
n' = O(y/n), to remove the fzf\/nr term from (2). This will establish (1), with
N =n+1+n' and the ax4; being the yi.

Proof of (2) : we have A

/ll z+y . 9 1
0 °8 T =

di(y) = — log | =
y T
By setting £ = z¢(n) and u = y/z the last expression takes the form

Y r —1
log(ye(n)) "y~ dy
=3 —y (ye(n))

2r 14+u 1 2r
il 1 Cldu+ 2o 2T t
3 ) log T ogé " u+71'2/; I logu - du
E 1
= r lo +u logu —du+—2—r log 1t+u log€ - —du
772 1 1 o
1
2r f[¢ 14 2r 14+u 1
- logl log¢ - —du-;—r— A log T logg-;du (4)

The integrand in the first term of (4) is positive for u > 1, so the term is bounded

below by

1
- 4 logu-;du

z llo ’1+u

The second term of (4) is log{" that is 7\/nr+rlogz,andif ¢ > 1ie.if 2 > 1/p(n)
the third term of (4) is bounded by

or [! 1+ u 1
7(—26— A log{l_u log{-;du
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because
1 1+4+u
—log

U 1—u

is increasing on (0, 1). Finally, by letting u = 1/t the last term of (4) becomes

2r [* 1
— o
72 Jo 8

14+t
1-t

log¢ - %dt.

Since

1 1 z 2t
+tl—dt=/ 2(1+—+g+--->dt
0

1—¢ft
1 2
g2x(1+i+—+---)=”$,

/ log
0

the last term of (4) is bounded below by % log € that is lr;\/nr. Then we get (2)
for > 1/p(n). For 0 < z < 1/¢(n) it is obvious.
Proof of (3) : letting

g9(z,y) = log

T+y
z—y|’
we write the left hand side of (3) as

n-—2

> l.«;l(é e(k)) + lg(ﬁ p(k +1)) — /ng(ﬁ e(u))du
2 I\> 27\ ‘ ’

k=0

+39(6:9(0) + 596, p(n = 1)

; [g(é,so(n -y2)- [

n

lg(@so(u))du] . )

where £ = zp(n) as before. The second and third terms are positive and so may be

ignored. We shall focus on proving that the first term - the sum - is bounded below,
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and only remark on the (mostly similar) proof that the fourth term is bounded
below. Each term in the sum is the error of a trapezoidal approximation to an
integral, which is non-negative if the integrand is convex. Suppose kg is such that
ke < 2 < Y if ¢ < o(n = 1)/p(n) ; if £ > p(n — 1)/p(n) take kg = n — 1.
Ganelius [2] states that for k # ko, g(£,¢(u)) is convex on (k,k + 1) in the proof
of his theorem with » = 1. That is true for k # 0, but for ¥ = 0 we need a small
additional argument. It is sufficient to show that
o) .

/ " (6, () = / log 41223

is bounded for £ > 1. That is true since the integrand approaches 0 uniformly in u

as £ approaches infinity, so that the integral approaches 0 as £ approaches infinity.
And the integral exists for all £ and is a continuous function of €.

Now to deal with the term in the sum of (5) for k = ko, we write the integral in

or [elk+1) log y
= 9(&y)——
(k)

and note that replacing logy/y by (log go(k))/{ makes only a bounded difference.
So all we need to deal with is

that term as

1. €+ (k) £+ ok + 1)‘ 2r /“’("“) ‘E y| logp(k) ,
—1 —-1 —_— log | >— ——=
Ble—o®| "2 B lem ek "7 oy Bl £
Setting 1 46 = (P(k +1) and 1 — ( ) , we have

2r 1
73 loge(k) = —5+0(1).

So the quantity we are dealing with is

1 1 1 1 € 1 6 1
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where 0 < € < §. We can then see that this last quantity is bounded below.

As for the last term in (5), the difficulty is mainly for ¢ between ¢(n — 1) and
@(n); it is dealt with by an argument similar to the one above for k — kg. Hence (3)
is established.

Our last step in proving theorem is the elimination of the (rz/2)\/nr term in
(2). For that we use the fact that

log x+y‘ >2rfor0<z<1
r—y
if 21
e —
> =0.76--- .
y 2> o 0.76
We set
n = [g\/m] +1
and take as yn41,** ,Yn+ns, any distinct numbers in [0.8, 1) that are different from

all Ofyovylv"' 1 Yn—-1,Yn. O

3. Application

By using the Ganelius’ theorem [2], Anderson {1] estimates the upper bound of
y g

1 :
san =gt ([ 1Bulrda) ", vith g = p/to - 1),
n 1

obtaining from the error of definite optimal quadrature formula with n nodes for
[}, f(z)dz, fe HP, withp>1and

hid zZ— 2
B.(2) =H (1_z;), |zi] < 1.

=1
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Transforming our extension theorem to the unit disk by

1-22 1—a
T=E 1 2k VI1tar and Ok ok

we find that N
2\r | 2= bk
- — 1< — .
zén[—-al)fl](l z%) _INI T < Cexp(—nVNr)

Here the prime on a product indicates that the index value ¥ = 0 is excluded. Since
all of the b used as nodes for the indefinite quadrature formula are not multiple,
we can introduce derivatives of the integrand into the formula with 2V nodes for
fil f(z)dz, f € H?, with p > 1. Then our indefinite quadrature formula will have
simple form. In our quadrature formula abscissas and coefficients may be calculated
easier than in Haber [4]’s formula and other formulas of that type that use the sin
- integral which is not as easy to evaluate as the log. The convergence rate of our
indefinite quadrature formula for functions in H? will also be better than that of

Stenger type formulas [6] by a factor of v/2 in the coustant of exponential.

REFERENCES

—

. J.E. Anderson, Optimal quadrature of HF functions, Math. Z. 172 (1980), 55-62.
2. T. Ganelius, Rational approzimation in the complex plane and on the line, Ann. Acad. Sce.
Fenn Sec. A. I, 2 (1976), 129-145.
3., Some exiremal functions and approzimation, In: Fourier analysis and approx-
imation theory, Proceedings of a Colloquium (Budapest 1976), Amsterdam-Oxford-New
York, North Holland (1978), 371-381.
4. S. Haber, Two formulas for numerical indefinite integration, Math. Comp. 201 (1993),
279-296.

. D. J. Newman, Rational approzimation to |z|, Michigan Math. J. 11 (1964), 11-14.

. F. Stenger, Numerical methods based on Whiitaker cardinal, or sinc functions, SIAM Rev.
23 (1981), 165-224.

[



