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A NEW INDEX OF DIMENSIONALITY — DETECT

HAE Rim KM

ABSTRACT. A data-driven index of dimensionality for an educational or psychological
test — DETECT, short for Dimensionality Evaluation To Enumerate Contributing
Traits, is proposed in this paper. It is based on estimated conditional covariances of
item pairs, given score on remaining test items. Its purpose is to detect whatever
multidimensionality structure exists, especially in the case of approximate simple
structure. It does so by assigning items to relatively dimensionally homogeneous
clusters via attempted maximization of the DETECT over all possible item cluster
partitions. The performance of DETECT is studied through real and simulated data
analyses.

1. Introduction

Given an educational or psychological test, it is very important to identify the
number of latent dimensions, to estimate the amount of multidimensionality, and
to assign items to simple structure clusters (i.e., each cluster consisting of dimen-
sionally homogeneous items) when approximate simple structure holds, as can be
the case for many kinds of tests. A data-driven index of dimensionality — DE-
TECT, short for Dimensionality Fvaluation To Enumerate Contributing Traits, is
introduced in this paper. Its purpose is to detect whatever multidimensionality
structure exists, especially in the case of approximate simple structure. Informally,
approximate simple structure holds when a test is composed of disjoint item clus-
ters that are dimensionally distinct from each other while the items are relatively
dimensionally homogeneous in each cluster. Operating in an exploratory mode,
DETECT searches for the best assignment of items to relatively dimensionally ho-
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mogeneous clusters. Then, DETECT estimates the amount of multidimensionality
displayed by the chosen partition into item clusters. Intuitively, if a test has an
approximate simple structure, then when two items come from the same cluster,
the conditional item pair covariance given total score on the remaining items will
be positive. By contrast, if two items come from different clusters, the conditional
item pair covariance will be negative. For example, given a test of 50% math items
and 50% verbal items, one expects the conditional covariance of a math pair or
of a verbal pair (conditional on the score on the remaining items) to be positive.
By contrast, the conditional covariance of a math item, verbal item pair should be
negative.

Based on this, for a given partition of items into disjoint clusters, DETECT
combines the estimated conditional item pair covariances by adding conditional
item pair covariances when two items come from the same cluster and subtract-
ing conditional item pair covariances when two items come from different clusters.
Therefore, intuitively, the maximum value of DETECT occurs when the “correct”
dimensionality-based cluster formation is utilized. Further, the number of clusters
for the cluster formation that maximizes DETECT is judged to be the number of
dimensions present in the test, and the cluster that an item is located in corresponds
to the dominant dimension the item is measuring. In addition, the magnitude of
the maximum DETECT value is informative in indicating the degree of multidi-
mensionality the test displays.

A Genetic Algorithm is used to calculate the maximum DETECT value over all
possible item cluster partitions and to identify the maximizing cluster partition. In
general, it is computationally prohibitive to search over all possible cluster parti-
tions; instead, an informed choice of cluster formations is usually used in searching
for the maximum DETECT value. One method is to use a Hierarchical Agglomer-
ative Cluster (HAC) analysis Computer Program, the HAC algorithm customized
by the use of a proximity measure sensitive to the dimensional homogeneity of an
item pair and programmed by Roussos (Roussos, 1993), to propose various cluster
partitions from which one can find the maximum DETECT value. However, the
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DETECT value gotten from HAC is not always the global maximum. By using
a Genetic Algorithm, we have a greater chance to obtain the global maximum
DETECT value, or at least get very close to it.

The remainder of the paper is organized as follows. The definition of DETECT
is given in Section 2. Section 3 uses DETECT to analyze real data of the GRE. Sec-
tion 4 contains some simulation results from using DETFECT. Section 5 summarizes
results and gives some discussion.

2. Definition of DETECT

2.1 DETECT

The index DETECT was developed by Kim (1994) as an outgrowth of Junker
and Stout’s (1994) ¢ of multidimensionality assessment index. Suppose {X;1 <
i < n} is a test of n items. Suppose Aj, Ag,..., A, are all non-empty subsets of
the test {X;}, A4iNA4; =0foralll <i< j<r and U_; A = {X;}. Then,
P ={A, Ag,..., A} is called a r-subset (r-cluster) partition of the test.

For an item pair (Xj, X;), define a weighted sum of conditional covariance
estimates of X; and X; as

— 1222
CO’U,']' = — Z JkCOU(Xi,lesij = k). (1)
J k=0

Here S;; is the observed correct score on the (n — 2) remaining items except for
items ¢ and j, Jj is the number of examinees with score S;; = k, and J is the total
number of examinees. The estimated covariance Cov(X;, X;|S;; = k) for the index
triple (¢, 4, k) may be computed in the usual way:

Ji

o 1 &

CO’U(XZ',XJ'IS,'J' = k) = Tk E (T — Eik)(mjkl - Tjk);
=1

here z;;; is the score of item ¢ for the [-th examinee with S;; = k, and Tj;, =
ISk aa, i=1,2,...,m, k=0,1,...,n—2,1=1,2,..., Jk.
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Let Q be the set of all pairs of item indices, i.e.,
Q={(Gj5),1<i<j<n}
Note that Q has n(n —1)/2 elements.

The index DETECT is defined as

DETECT(P)zn—n—2— 3" 6;(Covij — Cov), )

(=1) (Oen
where P is any specified r-subset (r-cluster) partition of the test, Cov is the average
of C/;vz-j over all n(n — 1)/2 item pairs, and

G = 1  if items X; and X; are in the same cluster
Y| -1 otherwise.

The index J;; manipulates the (C/'o\'v” — Cov) term in (2), to be added or sub-
tracted according as items X; and X belong to the same cluster or not; when both
items belong to the same cluster the centered (it is centered at Cov) conditional
covariance estimate (C/o\v,-j — Cov) is added, while it is subtracted otherwise. The
rationale of centering will be discussed later.

As a function of P, DETECT can take on value ranging from negative to pos-
itive. One object here is to find one particular partition of the test mazimizing
DETECT. Maximum DETECT is expected when test is classified into dimension-
ally “correct” subsets. To further understanding, close examination of the behavior
of conditional covariance C/o\vi]-, which is used as basic building block of DETECT,
is essential in terms of membership of items ¢ and j into subsets.

2.2 Conditional Covariance

For didactic purposes, we first consider two dimensional tests and assume that
all items are modeled by the following two dimensional compensatory logistic model
(Reckase, 1985):

l-¢
Pi 0 70 =¢+ ’
(61,02) = c; 1+ exp{1.7(a;1601 + apb2 — d;)}
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where

(a;1,0:2) is the discrimination parameter vector,
d; is a scalar parameter that related to the difficulty of item ¢,
¢; is the lower-asymptote parameter (0 < ¢; < 1),

(61, 62) is the complete latent trait vector.

In the two dimensional (6, 6;) plane, intuitively the total score (or the remain-
ing total score) can be thought as (best) measuring a linear composite # of the
two traits having weights determined primarily by the influence of each trait; this
linear composite is called the test composite. Especially in simple structure case,
the number of items in each trait and the strength of discrimination of the items
in each trait are most influential in determining the weights of the test composite.
The point is that (707)15 is interpreted as an estimator of Cov(X;, X; | @) for an
appropriate level of 8 corresponding to the observed score S;; value.

Adapting the graphical method of representing items of Ackerman(1994), when
a test is strictly unidimensional, all item discrimination vectors lie on a straight
line in the (61,62) plane, and consequently the test composite considered also lies
on the same line. In this case, 60\7)ij = 0 because local independence holds for
unidimensional § approximately estimated by S;;, except for statistical error caused
by score unreliability and by estimation noise. Thus, maximum DETECT value
will also be expected to be zero except for statistical error.

When a test is essentially unidimensional (see Stout, 1990), one possible case
is that all item discrimination vectors form one narrow fan-shaped sector in the
two dimensional plane, as shown in Figure 1(a). In this case the dominate unidi-
mensional trait is the test composite, and the C/&Jz‘j can be expected to be relative
small. Hence, the maximum DETECT value should be relatively small, indicating
approximate unidimensionality or weak multidimensionality.

Assume in the cases considered, as illustrated in Figure 1, the score we condition
on has equal weights for both 6; and 69; that is, the test composite direction has
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a 45° angle (the dotted line in Figure 1) in the plane. Then, conditioning on
the total score, corresponding to the 45° line trait, it is intuitive that positive
covariances should be produced between items on the same side of the 45° line,
and negative covariances between items from different sides except for statistical
error. Recall from (2) that § makes the negative conditional covariances positive
in calculating DETECT when they are from between-cluster items. Therefore,
except for statistical error, DETECT can be expected to be maximized at by a
2-subset partition formed by dividing items by the 45° line, even for the cases as
shown in Figure 1(c) and (d) where the degree of simple structure is much less. For
more details, consult Kim (1994). Supporting simulation results will be provided
in Section 6.

0>

6,
(c)

Figure 1
Four Hypothetical Test Structures in the Two Dimensional Plane
(the dotted line represents the test composite direction)
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2.3 DETECT gy

Denote DETECT e, to be the maximum DETECT value calculated over all
possible partitions of a test. According to the theoretical results in the next sec-
tion, it becomes clear that the main objective is to find a partition that maximizes,
or approximately maximizes, DETFECT, because then one suspects that this parti-
tion, except for statistical error, correctly indicates the underlying multidimensional
structure. The number of sizable clusters (that contain at least a certain number
of items, say 4) in this partition that maximizes DETECT is judged to be the
number of dimensions present in the test, and the average direction of the cluster
that an item is located in corresponds to the dominant dimension the item is (best)
measuring. The minimal cluster size restriction helps prevent the identification of
dimensions having only a minor influence as well as helping reduce the possibility
of statistical noise being opportunistically yet incorrectly judged by DETECT as
contributing a (minor) dimension.

Since each estimated conditional covariance C/O\’Uij contributes to a measure of
the lack of unidimensionality resulting from violation of local independence (LI),
the size of DETECT,,,, can be viewed as an indicator that quantifies the amount of
departure from unidimensionality. This amount of departure from unidimensional-
ity is interpreted as the magnitude of departure from the unidimensional composite
direction determined by a weighted average of all the underlying latent dimensions,
these dimensions represented by item clusters in the approximate simple structure
case. This composite direction can be thought of intuitively as the single dimen-
sion best measured by the test, somewhat like the psychologist’s g on an intelligent
test. DETECT . is expected to be close to zero for unidimensional data, while it
reaches a substantially larger value for heavily multidimensional data.

Unfortunately, for a finite-length unidimensional test, there exists statistical
bias in the index DETECT due to the lack of reliability of the conditioning scores
Sij, as recognized by Rosenbaum (1984), Holland & Rosenbaum (1986), Douglas,
Kim & Stout (1994) and Kim et al. (in press) among others. That is it can be
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proposed under appropriate assumptions that
Cov(X,-,XjISz-j) >0, forall1 <i<j<n.

Therefore,
E[Cou(X;, X;]8;;)] >0, foralll<i<j<n.

Notice that
n—2
E[Cou(X;, X;18;;)] = > _ Prob (S;; = k) Cov(X;, X;|S;; = k). (3)
k=0
By comparing (1) and (3), we see that Cov;; is a reasonable estimate of E[Cov(X;,
X;|Si;)]- Hence, the claimed statistical bias of the Cov;; and hence of DETECT
will occur. In order to correct this bias, the average Cov is subtracted from each
Cov;; before it is combined into DETECT. This is why the (Cov;; — Cov) term is
used in (2) rather than C"O\’Uij. Indeed, after this bias correction, as will be seen
later, DETECT ., remains small for unidimensional data as desired. Simulation
studies show that this correction, designed for the correction of the positive bias in
the unidimensional case, has no visible deleterious impact in the multidimensional
case. That is, as desired, DETECT ,,, remains large for strongly multidimensional
data while staying near zero for the unidimensional data.

Table 1 below roughly categorizes a suggested quantitative interpretation of the
amount of departure from unidimensionality, or the amount of multidimensionality,
which is indicated by the maximum DETECT value. It should be stressed that

”»

the “amount” of multidimensionality is distinct from the number of dimensions;
a two-dimensional data set could display a large amount of multidimensionality
if the two dimensions are each well measured and are weakly correlated while an
eight-dimensional data set could display very weak multidimensionality if there is
only one dominant dimension and/or the multiple dimensions are highly correlated.

In Table 1, the DETECT value has been multiplied by 100 for convenience.
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Table 1
A Categorization of DETECT ., as an Index
of Amount of Multidimensionality

DETECT 4z Multidimensionality

0.0-0.19 unidimensional
0.2-0.39 weak
0.4-0.79 moderate
0.8 - strong

Theoretical justification of DETECT is developed by Zhang (1996) and it sup-
ports well the use of DETECT. Also it is essential to search for the meaningful
cluster formation which maximizes the DETECT, in fact requiring enormous com-
putation. Recently the Genetic Algorithm is adapted by Zhang (1996). See Zhang
(1996) and Zhang, Stout & Kim (1995) for details.

3. Real Data Analysis

Two Analytical Reasoning sections of an administration of the GRE have eight
passages with 38 items. We chose four passages for which the data was complete
and which seemed likely to be dimensionally distinct. These four passages have a
total of 19 items with numbers of items/passage being 5, 4, 4, and 6. The number
of examinees we used was 2477. DETECT was maximized at four clusters with the
maximum DETECT value being 8.34 x 1073, Strikingly, the four clusters found
by DETECT corresponded exactly to the items associated with each of the four
passages.

4. Simulated Data Analysis

The three parameter logistic (3PL) model is used in the generation of dichoto-
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mously scored data, 1 for a correct answer and 0 for an incorrect answer. The
probability of getting an item X right at ability 6 is given by the equation

l1-c
1+exp{—-1.7a(6 — b)}

where a, b, and ¢ are parameters characterizing the item assumed to be independent

P(X=1[0)=c+

each other. Parameter ¢ is called the guessing parameter corresponding to the
probability that a person completely lacking ability (§ = —oo) will answer the
item correctly. Often it is called the lower asymptote. Parameter a represents the
discriminating power of the item along the probability curve P(X = 1] 6) at its
inflexion point, while parameter b determines the position of the curve along the
ability scale. It is called the item difficulty. See Lord (1980) for details.

A 40 item test is split into several dimensionally distinct clusters. Each cluster
is unidimensional to form a simple structure test. That is, all the items within a
cluster load on one ability trait and the unidimensional ability varies over separate
clusters. From unidimensional (1D) to four dimensional (4D) cases are simulated.
Table 2 gives the number of items in each dimension.

Table 2 N
Number of Items in the Test and
in Each Dimensionally Distinct Cluster

Number of Number of Items in
Items in Each Dimensionally
the Test Distinct Cluster
1D 40 40
2D 40 20/20
3D 40 13/13/14
4D 40 10/10/10/10

Item parameters are generated independently of items and of respective param-
eters within an item from the normal distribution with mean and variance specified
by Table 3 below.
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Table 3
Summary of Item Parameter Distribution

Discrimination  Difficulty

Mean 1.0 0.0
Standard Deviation 0.5 0.8
Maximum 2.5 15
Minimum 0.35 -1.5

The correlation coefficient between ability traits is one of the important fac-
tors to determine the extent of multidimensionality. In this simulation study, six
different values, 0.3, 0.5, 0.7, 0.8, 0.85, and 0.9, are employed as the correlation co-
efficients among ability traits generated from the multivariate normal distribution.
In each simulation model all possible pairs of ability traits have identical correlation
coefficients. 6000 response vectors are generated per model, and then the data are
cross validated with 3000 examinee responses used for constructing item clusters
and the other 3000 examinee responses used for calculating DETECT. Note that
all the values of DETECT presented in this paper are multiplied by 100 for ease of
presentation.

The values of DETECT are displayed in Table 4 for the unidimensional sim-
ulated data with the increasing number of clusters up to 5. As expected, all 5
DETECT values remain fairly small.

Table 4
DETECT in the Unidimensional Case

Number of Clusters
1 2 3 4 5
1D 0.0000 0.0340 0.0421 0.0524 0.0342

Table 5 shows DETECT,,. values for the two, three, and four dimensional cases
at the different correlation coefficients. Notice that DETFECT is maximized at the
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correct dimensionally-based cluster partitions in all these cases. It is interesting to
observe that the size of DETECT,,,; is a function of correlation coefficient. For
example, the smaller the correlation coefficient, the larger DETECT,;,4;, implying
larger amounts of lack of unidimensionality. In all cases when the traits are highly
correlated, there exists less multidimensionality revealing smaller DETECT ;.
Also it is noteworthy that the size of DETECT,,,, in Table 5 roughly explains the
strength of multidimensionality of the data.

DETECT"s behavior in the mixed structure tests are also investigated, even
though providing very promising results, but we do not deal with those here. For
details see Kim (1994).

Table 5
DETECT,,,; in the Two, Three, Four Dimensional Cases

Correlation Coefficient
0.3 0.5 0.7 0.8 0.85 0.9
2D 2.8446 1.7669 0.9105 0.8155 0.5224 0.4401
3D 2.0013 1.5984 1.0471 0.6417 0.4472 0.3706
4D 1.5148 1.1825 0.7834 0.4424 0.3077 0.2748

5. Discussion

The estimated conditional covariance based index DETECT for assessing the
dimensionality structure of educational /psychological test data is defined and inves-
tigated extensively in order to discern its properties. Through analyses of simulated
data, DETECT has been shown to display effective performance in identifying the
number of dimensions present in test data as well as in identifying the items con-
tributing to each dimension in the case of approximate simple structure and both
the mixed and approximate simple structure cases for two dimensional data. DE-
TECT has been shown to function effectively on identifying the paragraph-based
items if a verbal test as producing separate dimensions. Also it quantifies the lack
of unidimensionality of the data.
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Recently, a theoretical justification for DETECT is made by defining its the-
oretical analogue, called theoretical DETECT (see, Zhang and Stout, 1995). We
can see that under certain reasonable conditions, the theoretical DETECT will be
maximized at the correct simple structure cluster partition of the test items with
the number of clusters in this partition corresponding to the number of dimensions
of the test, for example, the clusters corresponding to items associated with the dis-
tinct paragraphs of a reading comprehension test. The properties of this theoretical
DETECT are under further in{restigation. More investigation on the asymptotic
behavior regarding DETECT is also planned for a future study as well as additional
simulations to study the performance of DETECT when the dimensionality is at
least three and approximate simple structure does not hold.
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