COCOMPACT F-BASES AND RELATION BETWEEN COVER AND COMPACTIFICATION

SANG DEOK LEE AND CHANG IL KIM

ABSTRACT. Observing that a locally weakly Lindelöf space is a quasi-F space if and only if it has an F-base, we show that every dense weakly Lindelöf subspace of an almost-p-space is C-embedded, every locally weakly Lindelöf space with a cocompact F-base is a locally compact and quasi-F space and that if Y is a dense weakly Lindelöf subspace of X which has a cocompact F-base, then β Y and X are homeomorphic. We also show that for any a separating nest generated intersection ring $\mathcal F$ on a space X, there is a separating nest generated intersection ring $\mathcal G$ on $\Phi_Y^{-1}(X)$ such that QF($w(X, \mathcal F)$) and $w(\Phi_Y^{-1}(X), \mathcal G)$ are homeomorphic and $\Phi_{Y_X}(\mathcal G^\#) = \mathcal F^\#$.

1. Introduction

Henriksen introduced pretty bases and showed that every locally weakly Lindelöf space with a cocompact pretty base is locally compact and basically disconnected ([6]). Henriksen, Vermeer and Woods showed that for a compact space X, $\Phi_X(Z(QF(X))^\#) = Z(X)^\#$, where $(QF(X), \Phi_X)$ is the minimal quasi-cover of X ([7]). In [8], the concept of F-bases which are generalized pretty bases was introduced and it was shown that every locally weakly Lindelöf space with an F-base is a quasi-F space.

Each normal base for a space X leads to a Wallman compactification ([1]) and a separating nest generated intersection ring was studied in [3], [4] and [10].

Received by the editors Oct. 29, 1996 and, in revised form, Jan. 23, 1997. Key words and phrases. Weakly Lindelöf space; Covering map; Quasi-F space; Almost-p-space. 1991 Mathematics Subject Classification. 54C10, 54G05, 54G10, 54D80.

In this paper, we will show that every dense weakly Lindelöf subspace of an almost-p-space is C-embedded, every locally weakly Lindelöf space with a cocompact F-base is a locally compact and quasi-F space and that if X has a cocompact F-base and Y is a dense weakly Lindelöf subspace of X, then β Y and X are homeomorphic. Moreover, we will show that for any a separating nest generated intersection ring $\mathcal F$ on a space X, there is a separating nest generated intersection ring $\mathcal G$ on $\Phi_Y^{-1}(X)$ such that QF(Y) and $w(\Phi_Y^{-1}(X), \mathcal G)$ are homeomorphic and $\Phi_{Y_X}(\mathcal G^\#) = \mathcal F^\#$, where $Y = w(X, \mathcal F)$ is the Wallman compactification of X associated with $\mathcal F$.

Except for the parts of this paper dealing with cotopologies, all of the spaces considered will be Tychonoff spaces and for the terminology, we refer to [5] and [9].

2. Cocompact F-bases

Recall that a subspace Y of a space X is C^* (C, resp.)-embedded in X if for any (bounded, resp.) continuous map $f: Y \longrightarrow R$, there is a (bounded, resp.) continuous map $g: X \longrightarrow R$ with $g|_{Y} = f$, where R is the space of real numbers endowed with the usual topology.

Definition 2.1 A space X is called a *quasi-F space* if for any zero-sets A, B in X, $cl_X(int_X(A \cap B)) = cl_X(int_X(A)) \cap cl_X(int_X(B))$, equivalently, every dense cozero-set in X is C*-embedded in X.

Lemma 2.2 Let Y be a dense subspace of a space X. Then for any closed set A in X, $int_X(A) \cap Y = int_Y(A \cap Y)$.

Proof. Clearly, $\operatorname{int}_X(A) \cap Y \subseteq \operatorname{int}_Y(A \cap Y)$. Let $x \in \operatorname{int}_Y(A \cap Y)$, then there is an open neighborhood U of x in X with $(U \cap Y) \subseteq (A \cap Y)$. Since Y is dense in X and U is open in X, $\operatorname{cl}_X(U) = \operatorname{cl}_X(U \cap Y) \subseteq A$ and hence $x \in \operatorname{int}_X(A) \cap Y$.

A subspace Y of a space X is said to be z-embedded in X if for any zero-set A in Y, there is a zero-set Z in X with $A = Z \cap Y$. For any space X, βX denotes the

Stone-Čech compactification of X. Using the above lemma, we will prove that the following:

Proposition 2.3 A space X is a quasi-F space if and only if every dense z-embedded subspace of X is C^* -embedded in X.

Proof. Suppose that X is a quasi-F space. Take any dense z-embedded subspace Y of X and disjoint zero-sets A, B in Y. Then there are disjoint zero-sets C, D in Y such that $A \subseteq \operatorname{int}_Y(C)$ and $B \subseteq \operatorname{int}_Y(D)$. Since Y is z-embedded in X, there are zero-sets E, F in βX such that $C = E \cap Y$ and $D = F \cap Y$. Since Y is dense in βX and $F \cap E \cap Y = \emptyset$, $\operatorname{int}_{\beta X}(F) \cap \operatorname{int}_{\beta X}(E) = \emptyset$. Since X is a quasi-F space, βX is also quasi-F ([7]) and hence $\operatorname{cl}_{\beta X}(\operatorname{int}_{\beta X}(F)) \cap \operatorname{cl}_{\beta X}(\operatorname{int}_{\beta X}(E)) = \emptyset$. By the above lemma, $\operatorname{cl}_{\beta X}(\operatorname{int}_Y(C)) \cap \operatorname{cl}_{\beta X}(\operatorname{int}_Y(D)) = \operatorname{cl}_{\beta X}(\operatorname{int}_{\beta X}(E)) \cap \operatorname{cl}_{\beta X}(\operatorname{int}_{\gamma X}(F)) = \operatorname{cl}_{\beta X}(\operatorname{int}_{\beta X}(E) \cap Y) \cap \operatorname{cl}_{\beta X}(\operatorname{int}_{\beta X}(F)) = \emptyset$. Thus $\operatorname{cl}_{\beta X}(A) \cap \operatorname{cl}_{\beta X}(B) = \emptyset$ and therefore Y is C^* -embedded in X ([5]). Since every cozero-set in X is z-embedded in X ([2]), the converse is trivial.

For any space X, Coz(X) denotes the set of cozero-sets in X.

Definition 2.4 Let X be a space and $\mathcal{B} \subseteq \operatorname{Coz}(X)$. Then a base \mathcal{B} for X is said to be an F-base for X if \mathcal{B} is closed under countable unions and for any A, B $\in \mathcal{B}$, $\operatorname{int}_X(\operatorname{cl}_X(A \cup B)) = \operatorname{int}_X(\operatorname{cl}_X(A)) \cup \operatorname{int}_X(\operatorname{cl}_X(B))$.

For any quasi-F space X, Coz(X) is an F-base for X. A base \mathcal{B} for a space X is called a *pretty base* if each B in \mathcal{B} is clopen in X and for any sequence (B_n) in \mathcal{B} , $cl_X(\cup \{B_n : n \in \mathbb{N}\}) \in \mathcal{B}$ ([6]). Clearly, for any pretty base \mathcal{B} for a space X, $\{\cup \mathcal{B}' : \mathcal{B}' \text{ is a countable subfamily of } \mathcal{B}\}$ is an F-base for X.

Recall that a space X is called weakly $Lindel\ddot{o}f$ if for any open cover \mathcal{U} of X, there is a countable subfamily \mathcal{V} of \mathcal{U} such that $\cup \mathcal{V}$ is dense in X and that a space X is called locally weakly $Lindel\ddot{o}f$ if every element of X has a weakly $Lindel\ddot{o}f$ neighborhood.

Proposition 2.5 ([8]) A locally weakly Lindelöf space X is quasi-F if and only if X has an F-base.

Lemma 2.6 Let X be a space. If X has a dense weakly Lindelöf subspace, then X is also weakly Lindelöf.

Proof. Let Y be a dense weakly Lindelöf subspace of X and \mathcal{U} an open cover of X. Since Y is a weakly Lindelöf space, there is a countable subfamily \mathcal{V} of \mathcal{U} such that $(\cup \mathcal{V}) \cap Y$ is dense in Y. Since Y is dense in X, $\cup \mathcal{V}$ is dense in X.

Proposition 2.7 Let X be a space with an F-base \mathcal{B} and Y a dense weakly Lindelöf subspace of X. Then Y is C*-embedded in X.

Proof. By Lemma 2.6, X is a weakly Lindelöf space and by Proposition 2.5, X is a quasi-F space. Take any disjoint zero-sets A, B in Y. Then there are zero-sets C, D in Y such that $A \subseteq \operatorname{int}_Y(C)$, $B \subseteq \operatorname{int}_Y(D)$ and $C \cap D = \emptyset$. Since Y is weakly Lindelöf, Y - C and Y - D are weakly Lindelöf ([2]). Since \mathcal{B} is a base for X and $\mathcal{B} \subseteq \operatorname{Coz}(X)$, there are zero-sets E, F in X such that $\operatorname{cl}_Y(\operatorname{int}_Y(C)) = \operatorname{cl}_X(\operatorname{int}_X(E)) \cap Y$ and $\operatorname{cl}_Y(\operatorname{int}_Y(D)) = \operatorname{cl}_X(\operatorname{int}_X(F)) \cap Y$. Since X is a quasi-F space and Y is dense in X, $\emptyset = \operatorname{cl}_X(\operatorname{int}_X(E)) \cap \operatorname{cl}_X(\operatorname{int}_X(F)) = \operatorname{cl}_X(\operatorname{int}_Y(C)) \cap \operatorname{cl}_X(\operatorname{int}_Y(D))$ and hence $\operatorname{cl}_X(A) \cap \operatorname{cl}_X(B) = \emptyset$. Since βX is quasi-F, Y is C*-embedded in X.

Definition 2.8 A space such that every zero-set in it is a regular closed set is called *almost-p*.

It is well-known that if a space X is locally compact and realcompact, then βX - X is a compact almost-p-space ([9]). For a space X, vX denotes the Hewitt realcompactification of X.

Corollary 2.9 Suppose that X is an almost-p-space. Then we have the following:

- (a) every dense weakly Lindelöf subspace Y of X is C-embedded in X,
- (b) if Y is also realcompact, then Y = X.

Proof. (a) Since X is an almost-p-space, X is a quasi-F space and hence Coz(X) is an F-base. By Proposition 2.7, Y is C*-embedded in X. Take any zero-set Z in X with $Y \cap Z = \emptyset$. Since Y is dense in X, $int_X(Z) = \emptyset$ and hence $Z = \emptyset$, because

X is an almost-p-space. Thus Y and Z are completely separated in X and so Y is C-embedded in X ([5]).

- (b) By (a), Y is C-embedded in X and hence vX = vY. Since $Y \subseteq X$ and Y is realcompact, X = Y ([5]).
- **Definition 2.10** Let \mathcal{B} be a base for a space (X, τ) and τ^* the topology on X generated by $\{X \operatorname{cl}_{\tau}(B) : B \in \mathcal{B}\}$, where $\operatorname{cl}_{\tau}(B)$ is the closure of B in (X, τ) . Then τ^* is called the cotopology on X generated by \mathcal{B} . If \mathcal{B} is an F-base and (X, τ^*) is quasi-compact, then \mathcal{B} is called a cocompact F-base.
- **Lemma 2.11** Let (X, τ) be a space which has an F-base \mathcal{B} and τ^* the cotopology on X generated by \mathcal{B} . Then for any weakly Lindelöf subspace Y of (X, τ) , $\operatorname{cl}_{\tau}(Y)$ is closed in (X, τ^*) .
- Proof. Let $T = \operatorname{cl}_{\tau}(Y)$ and $x \in X$ T. Since (X, τ) is a regular space and $\mathcal B$ is a base for (X, τ) , $\{\operatorname{cl}_{\tau}(B) : x \in B \in \mathcal B\}$ is a local base at x in (X, τ) . Hence there is $B_x \in \mathcal B$ with $x \in B_x \subseteq \operatorname{cl}_{\tau}(B_x) \subseteq X$ T. For any $t \in T$, there is $B_t \in \mathcal B$ such that $t \in B_t$ and $B_t \cap B_x = \emptyset$. Since T is weakly Lindelöf, there is a sequence (x_n) in T such that $T \subseteq \operatorname{cl}_{\tau}(\cup \{B_{x_n} : n \in N\})$. Let $B = \cup \{B_{x_n} : n \in N\}$, then $B \in \mathcal B$ and $B \cap B_x = \emptyset$. Hence $x \in X \operatorname{cl}_{\tau}(B)$ and $T \cap (X \operatorname{cl}_{\tau}(B)) = \emptyset$. So $x \notin \operatorname{cl}_{(X,\tau^*)}(T)$. Thus T is closed in (X, τ^*) .
- **Theorem 2.12** Suppose that (X, τ) has a cocompact F-base \mathcal{B} . Then we have the following:
- (a) if (X, τ) is a quasi-F space and Z is a zero-set in X such that $cl_{\tau}(int_{\tau}(Z))$ is weakly Lindelöf, then $cl_{\tau}(int_{\tau}(Z))$ is a compact subset in (X, τ) , where $int_{\tau}(Z)$ is the interior of Z in (X, τ) ,
- (b) if (X, τ) is a locally weakly Lindelöf space, then (X, τ) is quasi-F and locally compact, and
- (c) if Y is a dense weakly Lindelöf subspace of (X, τ) , then βY and X are homeomorphic.
- *Proof.* (a) Let Z be a zero-set in (X, τ) such that $\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(Z))$ is weakly Lindelöf. Let $A = \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(Z))$ and \mathcal{U} a family of open sets in X with $A \subseteq \cup \mathcal{U}$. For any $a \in$

A, there is $U_a \in \mathcal{U}$ with $a \in U_a$ and there is $B_a \in \mathcal{B}$ with $a \in B_a \subseteq \operatorname{cl}_{\tau}(B_a) \subseteq U_a$. Let $\mathcal{V} = \{\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(B_a)) : a \in A\}$, then \mathcal{V} is a refinement of \mathcal{U} . Let $a \in A$ and $F = \operatorname{cl}_A((X - \operatorname{cl}_{\tau}(B_a)) \cap A)$. Then F is a regular closed set in A and so weakly Lindelöf ([2]). By Lemma 2.11, $\operatorname{cl}_{\tau}(F)$ is closed in (X, τ^*) . Note that $\operatorname{cl}_{\tau}((X - \operatorname{cl}_{\tau}(B_a)) \cap A)$ = $\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(X - B_a) \cap A)$. Since (X, τ) is a quasi-F space and $X - B_a$ is a zero-set in (X, τ) , $\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(X - B_a) \cap A) = \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(X - B_a)) \cap A$. Hence $\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(X - B_a)) \cap A$ is closed in (A, τ_A^*) and so $A - (\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(X - B_a)) \cap A) = \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(B_a)) \cap A$ is open in (A, τ_A^*) . Since $\{\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(B_a)) \cap A : a \in A\}$ is an open cover of (A, τ_A^*) and (A, τ_A^*) is compact, there are $a_1, a_2, ..., a_n$ in A with $\bigcup_{i=1}^n (\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(B_{a_i})) \cap A) = A$. Hence $A \subseteq \bigcup_{i=1}^n (\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(B_{a_i})) \subseteq \bigcup_{i=1}^n U_{a_i}$. Thus A is a compact subset in (X, τ) .

- (b) By Proposition 2.5, X is a quasi-F space. Take any $x \in X$, then there is a zero-set neighborhood Z of x in (X, τ) such that $\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(Z))$ is weakly Lindelöf. By (a), $\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(Z))$ is a compact subset in (X, τ) . Hence (X, τ) is a locally compact space.
- (c) Let Y be a dense weakly Lindelöf subspace of X. By Lemma 2.6 and Proposition 2.7, Y is C*-embedded in X and by (a), (X, τ) is compact. Hence βY and X are homeomorphic.

3. Relation between cover and compactification

For any space X, let R(X) denote the regular closed sets in X, Z(X) the set of zero-sets in X and $Z(X)^{\#} = \{ \operatorname{int}_{X}(\operatorname{cl}_{X}(A)) : A \in Z(X) \}$. It is well-known that R(X) is a Boolean algebra under the inclusion relation and $Z(X)^{\#}$ is a sublattice of R(X). Recall that a subset F of a lattice (L, \leq) with the top element 1 and the bottom element 0 is called an L-filter if (i) $F \neq \emptyset$, $0 \notin F$, (ii) $a \in F$ and $a \leq b \in L$ implies $b \in F$, and (iii) F is closed under finite meets and that a maximal L-filter F is called an L-ultrafilter.

Let X be a compact space and $QF(X) = \{\alpha : \alpha \text{ is a } Z(X)^{\#}\text{-ultrafilter}\}$. For any $A \in Z(X)^{\#}$, let $A^* = \{\alpha : A \in \alpha\}$. Then $\{A^* : A \in Z(X)^{\#}\}$ is a base for closed sets of some compact topology τ on QF(X). Let QF(X) be the topological space

with the topology τ . Define a map $\Phi_X : \operatorname{QF}(X) \longrightarrow X$ by $\Phi_X(\alpha) = \cap \alpha$. Then $(\operatorname{QF}(X), \Phi_X)$ is the minimal quasi-F cover of X, that is, $\operatorname{QF}(X)$ is a quasi-F space and Φ_X is a covering map (=) perfect irreducible) and for any quasi-F space Y and any covering map $f: Y \longrightarrow X$, there is a covering map $g: Y \longrightarrow \operatorname{QF}(X)$ with $\Phi_X \circ g = f([7])$.

Definition 3.1 Let X be a space and \mathcal{F} a family of closed sets in X. Then \mathcal{F} is called a separating nest generated intersection ring on X if (i) for each closed set H in X and $x \notin H$, there are disjoint sets in \mathcal{F} , one containing H and the other containing x, (ii) it is closed under finite unions and countable intersections, and (iii) for any $F \in \mathcal{F}$, there are sequences (F_n) and (H_n) in \mathcal{F} such that for any $n \in \mathbb{N}$, $X - H_{n+1} \subseteq F_{n+1} \subseteq X - H_n \subseteq F_n$ and $F = \cap \{F_n : n \in \mathbb{N}\}$.

For a subspace X of a space Y and a separating nest generated intersection ring \mathcal{F} on Y, $\mathcal{F}_X = \{A \cap X : A \in \mathcal{F}\}$ is a separating nest generated intersection ring on X ([10]).

Let X be a space and \mathcal{F} a separating nest generated intersection ring on X. Then \mathcal{F} is a normal base for X ([10]). Let $w(X, \mathcal{F})$ be the Wallman compactification of X associated with \mathcal{F} ([1]). Then $\mathcal{F} = Z(w(X, \mathcal{F}))_X$ and if Y is a compactification of X such that $\mathcal{F} = Z(Y)_X$, then there is a continuous map $f: w(X, \mathcal{F}) \longrightarrow Y$ with $f \circ w = j$, where $j: X \longrightarrow Y$ and $w: X \longrightarrow w(X, \mathcal{F})$ are dense embeddings ([10]).

Lemma 3.2 ([9]) Let K and Y be compactifications of a space X. Then for any disjoint closed sets A, B in K, $cl_Y(A \cap X) \cap cl_Y(B \cap X) = \emptyset$ if and only if there is a continuous map $f: Y \longrightarrow K$ with $f \circ j_1 = j_2$, where $j_1: X \longrightarrow Y$ and $j_2: X \longrightarrow K$ are dense embeddings.

Theorem 3.3 Let X be a space and $Y = w(X, \mathcal{F})$ for some a separating nest generated intersection ring \mathcal{F} on X. Then there is a separating nest generated intersection ring \mathcal{G} on $\Phi_Y^{-1}(X)$ such that QF(Y) and $w(\Phi_Y^{-1}(X), \mathcal{G})$ are homeomorphic.

Proof. Let $T = \Phi_Y^{-1}(X)$ and $\mathcal{G} = Z(QF(Y))_T$. Then \mathcal{G} is a separating nest generated intersection ring on T. Let $K = w(\Phi_Y^{-1}(X), \mathcal{G})$. Since $\mathcal{G} = Z(QF(Y))_T$,

there is a continuous map $h: K \longrightarrow QF(Y)$ with $h \circ w = j$, where $j: T \longrightarrow QF(Y)$ and $w: T \longrightarrow K$ are dense embeddings. Take any disjoint closed sets A, B in K. Since K is compact, there are disjoint zero-set neighborhoods C and D of A and B in K, respectively and since $\mathcal{G} = Z(K)_T$, $C \cap T$, $D \cap T \in \mathcal{G}$. So there are zero-sets E, F in QF(Y) such that $C \cap T = E \cap T$ and $D \cap T = F \cap T$. Since K and QF(Y) are compactifications of T, by Lemma 2.2, $\operatorname{int}_{QF(Y)}(E) \cap T = \operatorname{int}_K(C) \cap T$ and $\operatorname{int}_{QF(Y)}(F) \cap T = \operatorname{int}_K(D) \cap T$. Hence $\operatorname{int}_{QF(Y)}(E \cap F) = \emptyset$. Since QF(Y) is a quasi-F space, $\operatorname{cl}_{QF(Y)}(\operatorname{int}_{QF(Y)}(E)) \cap \operatorname{cl}_{QF(Y)}(\operatorname{int}_{QF(Y)}(F)) = \operatorname{cl}_{QF(Y)}(\operatorname{int}_K(C) \cap T) \cap \operatorname{cl}_{QF(Y)}(\operatorname{int}_K(D) \cap T)$, $\operatorname{cl}_{QF(Y)}(\operatorname{int}_{QF(Y)}(B \cap T) = \emptyset$. By the above lemma, there is a continuous map $k: QF(Y) \longrightarrow K$ with $k \circ j = w$. Thus $k \in A$ homeomorphism.

In [7], it is shown that for any compact space X, $\Phi_X(Z(QF(X))^\#) = \{\Phi_X(A) : A \in Z(QF(X))^\#\} = Z(X)^\#$. For any compactification Y of a space X, let $\Phi_{Y_X} : \Phi_Y^{-1}(X) \longrightarrow X$ be the restriction and corestriction of Φ_Y with respect to $\Phi_Y^{-1}(X)$ and X, respectively. For any separating nest generated intersection ring \mathcal{F} on X, let $\mathcal{F}^\# = \{ \operatorname{cl}_X(\operatorname{int}_X(A)) : A \in \mathcal{F} \}$.

Corollary 3.4 Let X be a space and $Y = w(X, \mathcal{F})$ for some a separating nest generated intersection ring \mathcal{F} on X. Then there is a separating nest generated intersection ring \mathcal{G} on $\Phi_V^{-1}(X)$ such that $\Phi_{Y_X}(\mathcal{G}^\#) = \mathcal{F}^\#$.

Proof. Let $h = \Phi_{Y_X}$, $T = \Phi_Y^{-1}(X)$ and $\mathcal{G} = Z(QF(Y))_T$. By the above theorem, $QF(Y) = w(T, \mathcal{G})$. Let K = QF(Y) and $A \in \mathcal{G}$, then there is a $B \in Z(K)$ with $A = B \cap T$. Since T is dense in K and B is closed in K, by Lemma 2.2, $\operatorname{cl}_T(\operatorname{int}_T(A)) = \operatorname{cl}_K(\operatorname{int}_K(B)) \cap T$. Since h is a covering map, $h(\operatorname{cl}_T(\operatorname{int}_T(A))) = \Phi_Y(\operatorname{cl}_K(\operatorname{int}_K(B))) \cap X$ ([9]). Since $\Phi_Y(Z(K)^\#) = Z(Y)^\#$, $h(\operatorname{cl}_T(\operatorname{int}_T(A))) \in \mathcal{F}^\#$. Hence $h(\mathcal{G}^\#) \subseteq \mathcal{F}^\#$. Let $C \in \mathcal{F}^\#$. Then $C = \operatorname{cl}_X(\operatorname{int}_X(D))$ for some D in \mathcal{F} and hence there is E in Z(Y) with $D = E \cap X$. By Lemma 2.2, $C = \operatorname{cl}_Y(\operatorname{int}_Y(E)) \cap X$. Since Φ_Y is a covering map, $\operatorname{cl}_K(\Phi_Y^{-1}(\operatorname{int}_Y(E))) = \operatorname{cl}_K(\operatorname{int}_K(\Phi_Y^{-1}(E))) \in Z(K)^\#$ and so $\operatorname{cl}_K(\Phi_Y^{-1}(\operatorname{int}_Y(E))) \cap T \in \mathcal{G}^\#$. Thus $h(\operatorname{cl}_K(\Phi_Y^{-1}(\operatorname{int}_Y(E))) \cap T) = \Phi_Y(\operatorname{cl}_K(\Phi_Y^{-1}(\operatorname{int}_Y(E)))) \cap X = \operatorname{cl}_Y(\operatorname{int}_Y(E)) \cap X = C \in h(\mathcal{G}^\#)$.

REFERENCES

- B. Banaschewski, On Wallman's method of compactification, Math. Nachr. 27 (1963), 105-114.
- 2. R. Blair, Spaces in which special sets are Z-embedded, Canad. J. Math. 28 (1976), 673-690.
- 3. J. L. Blasco, Complete bases in topological spaces, Studia Scientiarum Math. Hungatria 20 (1985), 49-54.
- J. L. Blasco, Complete bases in topological spaces II, Studia Scientiarum Math. Hungatria 24 (1989), 447-442.
- L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, New York (1960).
- M. Henriksen, Spaces with a pretty base, Journal of Pure and Applied Algebra 70 (1991), 81-87.
- 7. M. Henriksen, J. Vermeer, and R. G. Woods, Quasi-F-covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), 779-804.
- 8. C. I. Kim, Minimal covers and filter spaces, Topol. and its Appl. 72 (1996), 31-37.
- 9. J. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer, Berlin (1988).
- 10. A. K. Steiner and E. F. Steiner, Nest generated intersection ring in Tychonoff spaces, Trans. Amer. Math. Soc. 148 (1970), 589-601.

DEPARTMENT OF MATHEMATICS, DANKOOK UNIVERSITY, CHEONAN 330-714, KOREA

Department of Mathematics Education, Dankook University, Seoul 140-714, Korea