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COCOMPACT F-BASES AND RELATION
BETWEEN COVER AND COMPACTIFICATION

SANG DEOK LEE AND CHANG IL KiMm

ABSTRACT. Observing that a locally weakly Lindeldf space is a quasi-F space if and
only if it has an F-base, we show that every dense weakly Lindeldf subspace of an
almost-p-space is C-embedded, every locally weakly Lindeldf space with a cocompact
F-base is a locally compact and quasi-F space and that if Y is a dense weakly Lindelof
subspace of X which has a cocompact F-base, then 3Y and X are homeomorphic. We
also show that for any a separating nest generated intersection ring F on a space X,
there is a separating nest generated intersection ring G on Q;l (X) such that QF (w(X,
F)) and 'w(@;l (X), G) are homeomorphic and ®v, (G#) = F*.

1. Introduction

Henriksen introduced pretty bases and showed that every locally weakly Lin-
delof space with a cocompact pretty base is locally compact and basically discon-
nected ([6]). Henriksen, Vermeer and Woods showed that for a compact space X,
Py (Z(QF(X))*) = Z(X)*, where (QF(X), ®x) is the minimal quasi-cover of X
([7]). In [8], the concept of F-bases which are generalized pretty bases was intro-
duced and it was shown that every locally weakly Lindel6f space with an F-base is
a quasi-F space.

Each normal base for a space X leads to a Wallman compactification ([1]) and a
separating nest generated intersection ring was studied in [3], [4] and [10].
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In this paper, we will show that every dense weakly Lindel6f subspace of an
almost-p-space is C-embedded, every locally weakly Lindel6f space with a cocom-
pact F-base is a locally compact and quasi-F space and that if X has a cocompact
F-base and Y is a dense weakly Lindel6f subspace of X, then §Y and X are home-
omorphic. Moreover, we will show that for any a separating nest generated inter-
section ring F on a space X, there is a separating nest generated intersection ring
G on 3! (X) such that QF(Y) and w(®3*(X), G) are homeomorphic and ®y,, (G#)
= F* where Y = w(X, F) is the Wallman compactification of X associated with
F.

Except for the parts of this paper dealing with cotopologies, all of the spaces
considered will be Tychonoff spaces and for the terminology, we refer to (5] and [9].

2. Cocompact F-bases

Recall that a subspace Y of a space X is C* (C, resp.)-embedded in X if for
any (bounded, resp.) continuous map f : Y — R, there is a (bounded, resp.)
continuous map ¢ : X — R with g |y = f, where R is the space of real numbers
endowed with the usual topology.

Definition 2.1 A space X is called a quasi-F space if for any zero-sets A, B
in X, clx(intx (A N B)) = clx(intx(A)) N clx(intx(B)), equivalently, every dense
cozero-set in X is C*-embedded in X.

Lemma 2.2 Let Y be a dense subspace of a space X. Then for any closed set
Ain X, intx(A)NY = inty (ANY).

Proof. Clearly, intx(A) N'Y C inty (A NY). Let z € inty (A N Y), then there
is an open neighborhood U of z in X with (UNY) C (A NY). Since Y is dense in
X and U is open in X, clx(U) = clx(UNY) C A and hence z € intx(A) NY.

A subspace Y of a space X is said to be z-embedded in X if for any zero-set A in
Y, there is a zero-set Z in X with A = Z N'Y. For any space X, X denotes the
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Stone-Cech compactification of X. Using the above lemma, we will prove that the
following:

Proposition 2.3 A space X is a quasi-F space if and only if every dense z-
embedded subspace of X is C*-embedded in X.

Proof. Suppose that X is a quasi-F space. Take any dense z-embedded subspace
Y of X and disjoint zero-sets A, B in Y. Then there are disjoint zero-sets C, D in
Y such that A C inty (C) and B C inty (D). Since Y is z-embedded in X, there are
zero-sets E, F in X suchthat C=ENYand D =FN Y. Since Y is dense in X
and FNENY =0, intgx(F) N intgx (E) = 0. Since X is a quasi-F space, X is
also quasi-F ([7]) and hence clgx (intgx (F)) N clgx (intgx (E)) = 0. By the above
lemma, clgx (inty (C)) Nclgx (inty (D)) = clgx (inty (E N Y)) N clgx (inty (F NY))
= clgx (intgx (E) N Y) Nclgx (intgx (F) N Y) = clgx (intgx (E)) N clgx (intgx (F)) =
@. Thus clgx(A) N clgx(B) = 0 and therefore Y is C*-embedded in X ([5]). Since
every cozero-set in X is z-embedded in X ([2]), the converse is trivial.

For any space X, Coz(X) denotes the set of cozero-sets in X.

Definition 2.4 Let X be a space and B C Coz(X). Then a base B for X is said
to be an F-base for X if B is closed under countable unions and for any A, B € B,
intx(clx(A U B)) = intx(clx(A)) U intx(ch(B)).

For any quasi-F space X, Coz(X) is an F-base for X. A base B for a space X
is called a pretty base if each B in B is clopen in X and for any sequence (B,) in
B, clx(U{B, : n € N}) € B ([6]). Clearly, for any pretty base B for a space X,
{UB' : B’ is a countable subfamily of B} is an F-base for X.

Recall that a space X is called weakly Lindeldfif for any open cover U of X, there is
a countable subfamily V of I such that UV is dense in X and that a space X is called
locally weakly Lindeldf if every element of X has a weakly Lindelof neighborhood.

Proposition 2.5 ([8]) A locally weakly Lindeléf space X is quasi-F if and only
if X has an F-base.
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Lemma 2.6 Let X be a space. If X has a dense weakly Lindeldf subspace, then
X is also weakly Lindel6f.

Proof. Let Y be a dense weakly Lindel6f subspace of X and U an open cover of
X. Since Y is a weakly Lindel6f space, there is a countable subfamily V of U such
that (U V) NY is dense in Y. Since Y is dense in X, U V is dense in X.

Proposition 2.7 Let X be a space with an F-base B and Y a dense weakly
Lindel6f subspace of X. Then Y is C*-embedded in X.

Proof. By Lemma 2.6, X is a weakly Lindel6f space and by Proposition 2.5, X
is a quasi-F space. Take any disjoint zero-sets A, B in Y. Then there are zero-sets
C, D in Y such that A C inty(C), B C inty(D) and C N D = . Since Y is weakly
Lindel6f, Y - C and Y - D are weakly Lindelof ([2]). Since B is a base for X and
B C Coz(X), there are zero-sets E, F in X such that cly (inty (C)) = clx(intx (E))
N'Y and cly(inty (D)) = clx(intx(F)) N Y. Since X is a quasi-F space and Y is
dense in X, 0 = clx(intx (E)) N elx (intx (F)) =clx(inty (C)) N clx(inty (D)) and
hence clx(A) N clx(B) = 0. Since BX is quasi-F, Y is C*-embedded in X.

Definition 2.8 A space such that every zero-set in it is a regular closed set is
called almost-p.

It is well-known that if a space X is locally compact and realcompact, then
BX - X is a compact almost-p-space ([9]). For a space X, vX denotes the Hewitt
realcompactification of X.

Corollary 2.9 Suppose that X is an almost-p-space. Then we have the follow-
ing:

(a) every dense weakly Lindelof subspace Y of X is C-embedded in X,

(b) if Y is also realcompact, then ¥ = X.

Proof. (a) Since X is an almost-p-space, X is a quasi-F space and hence Coz(X)
is an F-base. By Proposition 2.7, Y is C*-embedded in X. Take any zero-set Z in
X with YN Z = 0. Since Y is dense in X, intx(Z) = @ and hence Z = 0, because
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X is an almost-p-space. Thus Y and Z are completely separated in X and so Y is
C-embedded in X ([5]).

(b) By (a), Y is C-embedded in X and hence vX = vY. Since Y C X and Y is
realcompact, X = Y ([5]).

Definition 2.10 Let B be a base for a space (X, 7) and 7* the topology on X
generated by {X - cl.(B) : B € B}, where cl,(B) is the closure of B in (X, 7). Then
7* is called the cotopology on X generated by B. If B is an F-base and (X, 7*) is
quasi-compact, then B is called a cocompact F-base.

Lemma 2.11 Let (X, 7) be a space which has an F-base B and 7* the co-
topology on X generated by B. Then for any weakly Lindeldf subspace Y of (X, 7),
cl-(Y) is closed in (X, 7%).

Proof. Let T =cl.(Y) and 2 € X - T. Since (X, 7) is a regular space and B is
a base for (X, 7), {cl,(B) : z € B € B} is a local base at z in (X, 7). Hence there is
B, e Bwithz € B, Ccl,(B;) CX-T. For any t € T, there is B, € B such that
t € B; and B N B, = 0 . Since T is weakly Lindel6f, there is a sequence (z,) in
T such that T C cl,(U{B;, : n € N}). Let B=U{B;_ : n € N}, then B € B and
BNB; =0. Hence z € X - cl;(B) and TN (X - cl-(B)) = 0. So z ¢ cl(x,,+)(T).
Thus T is closed in (X, 7*).

Theorem 2.12 Suppose that (X, 7) has a cocompact F-base B. Then we have
the following:

(a) if (X, 7) is a quasi-F space and Z is a zero-set in X such that cl.(int,(Z)) is
weakly Lindeldf, then cl, (int,(Z)) is a compact subset in (X, 7), where int.(Z) is
the interior of Z in (X, 7),

(b) if (X, 7) is a locally weakly Lindelf space, then (X, 7) is quasi-F and locally
compact, and

(c) if Y is a dense weakly Lindelof subspace of (X, 7), then 8Y and X are
homeomorphic.

Proof. (a) Let Z be a zero-set in (X, 7) such that cl,(int, (Z)) is weakly Lindel6f.
Let A = cl,(int,(Z)) and U a family of open sets in X with A C Ul{. For any a €
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A, there is U, € U with a € U, and there is B, € B with a € B, C cl,(B,) C U,.
Let V = {int,(cl;(B,)) : a € A}, then V is a refinement of Y. Let a € A and F =
cla((X - cl;(B,)) N A). Then F is a regular closed set in A and so weakly Lindel6f
([2]). By Lemma 2.11, cl,(F) is closed in (X, 7*). Note that cl,((X - c1.(B,)) N A)
= cl,(int, (X - B,) N A). Since (X, 7) is a quasi-F space and X - B, is a zero-set
in (X, 1), cl;(int. (X - B,) N A) = cl,(int,(X - B,)) N A. Hence cl,(int, (X - B,))
N A is closed in (A, 73) and so A - (cl-(int,(X - B,)) N A) = int,(cl (By)) N Ais
open in (A, 73). Since {int,(cl,(B,)) N A : a € A} is an open cover of (A, 7}) and
(A, 7%) is compact, there are a1, ag, ..., a, in A with U™, (int, (cl;(B,,)) N A) = A.
Hence A C U2, (int,(cl;(Bg;)) C U, U,,. Thus A is a compact subset in (X, 7).

(b) By Proposition 2.5, X is a quasi-F space. Take any z € X, then there is a
zero-set neighborhood Z of z in (X, 7) such that cl, (int,(Z)) is weakly Lindel6f. By
(a), cl;(int-(Z)) is a compact subset in (X, 7). Hence (X, 7) is a locally compact
space.

(c) Let Y be a dense weakly Lindel5f subspace of X. By Lemma 2.6 and Propo-
sition 2.7, Y is C*-embedded in X and by (a), (X, 7) is compact. Hence Y and X
are homeomorphic.

3. Relation between cover and compactification

For any space X, let R(X) denote the regular closed sets in X, Z(X) the set of
zero-sets in X and Z(X)#* = {intx(clx(A)) : A € Z(X)}. It is well-known that R(X)
is a Boolean algebra under the inclusion relation and Z(X)* is a sublattice of R(X).
Recall that a subset F of a lattice (L, <) with the top element 1 and the bottom
element 0 is called an L-filterif (i) F #0,0¢ F, (ii) a € F and a < b € L implies
b€ F, and (iii) F is closed under finite meets and that a maximal L-filter F is called
an L-ultrafilter.

Let X be a compact space and QF(X) = {a : « is a Z(X)#-ultrafilter}. For any
A € Z(X)#, let A* = {a: A € a}. Then {A* : A € Z(X)#} is a base for closed
sets of some compact topology 7 on QF(X). Let QF(X) be the topological space
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with the topology 7. Define a map ®x : QF(X) — X by ®x(a) = Na. Then
(QF(X), ®x) is the minimal quasi-F cover of X, that is, QF(X) is a quasi-F space
and ®x is a covering map ( = perfect irreducible) and for any quasi-F space Y and
any covering map f : Y — X, there is a covering map g : Y — QF(X) with
®xog=f ([7])

Definition 3.1 Let X be a space and F a family of closed sets in X. Then F
is called a separating nest generated intersection ring on X if (i) for each closed set
Hin X and z ¢ H, there are disjoint sets in F, one containing H and the other
containing x, (i) it is closed under finite unions and countable intersections, and
(ili) for any F € F, there are sequences (F,,) and (H,,) in F such that for any n €
N,X-Hp41 CFpy1 CX-H, CF,and F =n{F,:ne€ N}.

For a subspace X of a space Y and a separating nest generated intersection ring
FonY,Fx ={ANX:A € F}is a separating nest generated intersection ring on
X ([10]).

Let X be a space and F a separating nest generated intersection ring on X. Then
F is a normal base for X ([10]). Let w(X, F) be the Wallman compactification of
X associated with F ([1]). Then F = Z(w(X, F))x and if Y is a compactification
of X such that F = Z(Y)x, then there is a continuous map f : w(X, F) — Y with
fow=j,where j: X — Y and w : X — w(X, F) are dense embeddings ([10]).

Lemma 3.2 ([9]) Let K and Y be compactifications of a space X. Then for
any disjoint closed sets A, B in K, cly (A N X) N cly (B N X) = 0 if and only if there
is a continuous map f: Y — K with foj; = jo, where j; : X — Y and jp : X
—— K are dense embeddings.

Theorem 3.3 Let X be a space and Y = w(X, F) for some a separating nest
generated intersection ring  on X. Then there is a separating nest generated inter-
section ring G on ®3'(X) such that QF(Y) and w(®3*(X), G) are homeomorphic.

Proof. Let T = ;*(X) and G = Z(QF(Y))r. Then G is a separating nest
generated intersection ring on T. Let K = w(®3(X), G). Since G = Z(QF(Y))r,
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there is a continuous map h : K — QF(Y) with how = j, where j : T —
QF(Y) and w : T — K are dense embeddings . Take any disjoint closed sets A,
B in K. Since K is compact, there are disjoint zero-set neighborhoods C and D of
A and B in K, respectively and since G = Z(K)r, CN T, D N T € G. So there
are zero-sets E, F in QF(Y) such that CNT=ENTand DN T=FnNT.
Since K and QF(Y) are compactifications of T, by Lemma 2.2, intgpyy(E) N T
= intg (C) N T and intgry)(F) N T = intg(D) N T . Hence intgry)(ENF) =
0. Since QF(Y) is a quasi-F space, clgp(y)(intgr(v)(E)) N clgry)(intgr) (F))
= 0. Since clgr(y)(inter(v)(E)) N clor(y)(intor(v)(F)) = clgr(yv)(intx (C) N T)
N clgry)(intx (D) N T), clgryy(A N T) N clgrry)(B N T) = 8. By the above
lemma, there is a continuous map & : QF(Y) — K with koj = w. Thus his a
homeomorphism.

In [7], it is shown that for any compact space X, ®x(Z(QF(X))*) = {®x(A) :
A € Z(QF(X))*} = Z(X)*. For any compactification Y of a space X, let ®y, :
$3%(X) — X be the restriction and corestriction of &y with respect to ®3*(X)

and X, respectively. For any separating nest generated intersection ring F on X,
let 7# = {clx(intx(A)) : A € F}.

Corollary 3.4 Let X be a space and Y = w(X, F) for some a separating
nest generated intersection ring J on X. Then there is a separating nest generated
intersection ring G on ®y'(X) such that &y, (G#) = F#.

Proof. Let h = ®y,, T = &;'(X) and G = Z(QF(Y))r. By the above theo-
rem, QF(Y) = w(T, G). Let K = QF(Y) and A € G, then there is a B € Z(K)
with A = B N T. Since T is dense in K and B is closed in K, by Lemma 2.2,
clp(int7(A)) = clg(intg(B)) N T. Since h is a covering map, h{clr(intr(A))) =
®y (clk (intx(B))) N X ([9]). Since ®y(Z(K)*) = Z(Y)#, h(clr(intr(A))) € F*.
Hence h(G*) C F#. Let C € F#. Then C = clx(intx(D)) for some D in F and
hence there is E in Z(Y) with D = E N X. By Lemma 2.2, C = cly (inty (E))
N X. Since ®y is a covering map, clx(®;!(inty (E))) = clk(intx(®;(E))) €
Z(K)* and so clg (@3 (inty (E))) N T € G#. Thus h(clk (@5 (inty (E))) N T) =
By (clg (B3 (inty (E)))) N X =cly (inty (E)) N X = C € h(G#).
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