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A STUDY OF SOME TESTS OF
TREND IN CONTINGENCY TABLES

Eun Sook JEE

ABSTRACT. Consider an r X ¢ contingency table under the full multinomial model
in which each classification is ordered. The problem is to test the null hypothesis of
independence. A number of tests have been proposed for this problem. In this article
we show that all of these tests can be improved on in some sense for most cases. In
fact the preceding tests sometimes are inadmissible in a strict sense. Furthermore, we
show by example that in some cases improved tests can yield substantially improved
power functions.

Consider an 7 X ¢ contingency table under the full multinomial model where each
classification is ordered. Let X = (X;;) be the r X ¢ matrix of cell frequencies;
let p = (p;;) be the matrix of cell probabilities; let r; be the ith row total of
cell frequencies; let v/ = (rq,--- ,77—1) be the 1 X (r — 1) vector consisting of the
first (r — 1) row totals; let ¢; be the jth column total of cell frequencies; and let
d = (c1,+ ,cc—1) be the 1 X (¢ — 1) vector consisting of the first (¢ — 1) column
totals. Let m = (r,c) and n = > Y X;;. Under the full multinomial model,
X ~ M(n,rc,p). The problem is to test independence against the alternative that
all local log odds ratios are nonnegative with at least one local log odds ratio positive.
We express the testing problem as testing the null hypothesis H : p;; = p;.p.; for
1=12--,rj5=12,--¢c, where p;, = ijlpij and p; = Y. _, pij, against
K : log{pijparn)G+1)/PiGi+1)Pa+1)i} 2 0,6 =1,2,--- ;7 —1; j = 1,2,--- ;¢ =1,
with strict inequality for at least one pair (7,7). Such an alternative makes sense
when the categories of the contingency table are ordered.

Models for local odds ratios in tables with ordered categories were discussed
in Agresti (1984;see especially chaps. 5, 9, and 10). In that book, tests based
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on C — D, the number of concordant pairs minus the number of discordant pairs,
were discussed. The gamma test, originally suggested by Goodman and Kruskal
(1954), was also discussed and illustrated in Agresti (1984). The gamma test was
recommended by Subramanyam and Rao (1988). Hirotsu (1982) studied a class of
tests that form a subset of an essentially complete class of tests for this problem.
Cohen and Sackrowitz (1991) formed a different subset of an essentially complete
class and found the class of exact, unbiased, and admissible tests. Patefield (1982)
did a numerical study for the case r = 3, ¢ = 2 and compared the powers of exact
tests based on the likelihood ratio statistic, two linear statistics, and the Goodman-
Kruskal gamma test. Robertson, Wright, and Dykstra (1988, p.262) listed this
model and discussed the likelihood ratio test. Agresti, Mehta, and Patel (1990)
(hereinafter referred to as AMP) offered an algorithm that enables exact tests via

linear statistics.

In this article we attempt to address the question: Which tests can be rec-
ommended? We demonstrate not only that the Goodman-Kruskal gamma test is
(usually) inadmissible but also that a better test with substantially improved power
can be found. For r = 2, ¢ > 3(or r > 3, ¢ = 2) the test based on (C — D) is
a linear test and can be admissible and unbiased. However, tests based on C — D
often are inadmissible for r > 3, ¢ > 3. AMP (1990) suggested some linear statistics
that can be used to test H versus K. Should an exact test using such statistics be
desired, then randomization often could be necessary and the resulting test would

be inadmissible. In some such cases substantial improvement is possible.

If a test of exact size is desired, it would require auxiliary randomization as is the
usual case in discrete models. Hence if the tests based on some statistic S were to be
exact in size, randomization usually would be required on some tables of observed
frequencies for which, say S = C,. We suggest a test based on a statistic T}, in
this paper. However, instead of randomizing on some tables where T, = C,, we
use a different statistic to discriminate among those tables to achieve an exact test.
Such a procedure would be preferable, because the class of tables which require
randomization would be considerably smaller.

In most practical situations statisticians prefer not to use auxiliary randomiza-
tions in carrying out a test. One popular procedure that avoids randomization is to
examine the value of the test procedure. As defined by Lehmann (1986, p. 70), the
p value is a concept used with “a nested family of rejection regions corresponding
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to different significance levels” and is “the smallest significance level at which the
hypothesis would be rejected for the given observation.” Thus for the test based on

T, one would compute

Pu(Tp 2 bo), (1)

the probability under the independence model that T}, is at least £, where #p is the
observed value of T},. To convert this to a decision of reject or accept, one rejects
if (1)< «, where is a preassigned number. Our proposal is to follow up the T},
test when T, = c, with a procedure that orders sample points according to their
probabilities. Such a method also generates nested rejection regions and can be
done using p values. The advantage of our procedure is that our p values will be
greater (and in many cases will be smaller) than those of the 7}, test procedure.
Our list of available p values will be greater. Another way of seeing the advantage
is as follows: The p value approach is conservative in the sense that the probability
of the type I error is always less than or equal to a preassigned value. QOur finer
grid of p values enables us to reject more and still maintain the conservative nature
of our test regarding the type I error. Thus the probability of our type I error is
below the preassigned value and our power is never lower (and usually is higher for

most alternative points).

The preceding arguments demonstrate the desirable features of our test procedure
in cases of exact testing and in cases where auxiliarly randomization is to be avoided.
Some comments regarding computational feasibility are made at the end of Section
1.

In Section 1 we state the theorem of Cohen and Sackrowitz (1991), which gives
the class of unbiased (hence exact), admissible tests. We also define all the tests to
be studied. In Section 2 we show by example that the exact gamma test is (usually)
inadmissible; for 7 > 3, ¢ > 3, exact tests based on C — D are (usually) inadmissible.
We show numerically the improvements that can be made. We show numerically
the improvements that can be made. We also evaluate the test we recommend,

providing some numerical support in power calculations.

We remark that although the article’s language is somewhat decision theoretic,
its nature is virtually entirely applications oriented. In fact, the article represents

an instance where decision theory ideas offer useful and practical findings.
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1. UNBIASED, ADMISSIBLE TESTS

Let Yij = Y71 ey Xit, Yo = (Yir, -+, Yieeny), 6= 1,2, ,r— L, and ¥ =
(Y1, - ,Y-_1). Let ©(z) be an exact test of size . Note that (m,Y) is a one-one
linear transformation from the space of X. Express ¢(z) in terms of (m,Y) by
©m(y); that is, the conditional test for each fixed m = (r, ¢) expressed as a function
of y is ¢ (y). We know that because ¢(z) is of size , then ¢, (y) is of size « for
all m (see Cohen and Sackrowitz 1991).

Suppose for each m, ¢m(y) is monotonically nondecreasing in y in the sense
that ¢n,(y) is nondecreasing in any component variable when all others are fixed.
Let Ay, = {¥ : ¢m(y) < 1} for each fixed m. Ay, is the set of points for which
the conditional test does not reject with probability 1; that is, except for possible
randomization, the acceptance region of the test.) Then, from Cohen and Sack-
rowitz(1991) we have the following theorem.

Theorem 1.1. For each fired m, if o (y) is monotone nondecreasing in y, then the
test om(y) is conditionally unbiased and the test p(x) is unconditionally unbiased.
Furthermore, the original test () is admissible if and only if for each fitedm, A,

is convezx and @, (y) is zero at nonextreme points of A, ..

Thus an exact test is unbiased and admissible if and only if conditionally, given
m, the acceptance regions are monotone (in the sense that the corresponding ¢, (y)
is monotone) and convex with randomization possible only at extreme points.

Note that a point b € A is called an extreme point if b is not an interior point of
any line segment in A.

At this point we will define the tests we wish to study. The first test statistic is

C—D=) > zjan - Z > @imn. 2
i<k j<l i<k j>1

(See Agresti 1984, chap.9.) In(1) C = Y ., 2 ;<1 %ijTki. The Goodman-Kruskal
statistic is ’

I'=(C-D)/(C+ D). (3)
The family of linear statistics studied by AMP(1990) is

T= Z Z UV Ti5, 4)

i=1 j=1
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where the us and v;s are monotone nonincreasing (or nondecreasing). In particular
if u; = (r —¢) and v; = (¢ — j), then (4) becomes

T, = ZZW, (5)

j=1:=1

which is a version of Pearson’s correlation coefficient. For the test that we rec-
ommend, we will need to order conditional probabilities under the independence
model, with m = (7, ¢), of those tables for which T, = . Suppose we let 2’ =
{Z:Zisrxc, Z1 =1, Z'1 = c}, where 1 is a vector of ones of an appropriate
dimension. Then the conditional probabilities of interest can be expressed as

Z Ci '}{H ri!}/n! H H #ij! (6)
1=14=1
for those tables Z € Z’ such that T, = to.

The exact test of size o that we recommend is as follows: Let C, be a con-
stant(depending on m) such that P{T}, > Co} > a and P{T, > C,} = A < a. Our
test rejects if T, > C,.

If T, = Cq, consider all tables z|m, T, = C4. Order the tables according
to their probabilities. (Ordering outcomes in a sample space according to their
probabilities was first done by Freeman and Halton (1951)). Reject for those tables
whose probabilities are smallest and are summed to (o — A). Randomization may
be required. Such randomization can occur only at extreme points of the convex
acceptance section (given m, T, = C,), as we see from Cohen(1987). The overall
resulting test, which we call T}, plus order or simple ¢7,,, satisfies the properties of
Theorem 1.1. It is a more desirable test than 7;,, which randomizes on this entire
set {z : m fized, T, = C,}. Usually such a set contains nonextreme points, which
implies the inadmissibility of the exact test based on T}, in such cases.

If testing is to be carried out using p values, the p value of the T}, test is
PH(Tp > tO)) (7)

where ?p is the observed value of T,. The p value for the test ¢r,, is obtained
as follows: Let X be the observed table with marginal totals m = (r,c). Let
B={Z2:Ze€Z2, T, =ty p(Z) < p(X)}. Then the p value of @1, is Py(T, >
to) + > zep Pu(Z).



12 EUN SOOK JEE

Carrying out tests based on p values avoids auxiliary randomization. In terms
of the inadmissibility results previously stated for exact tests, the 7, test no longer
would be inadmissible when performed without randomization. It would be too
conservative, however. The I" test and tests based on C' — D still usually would be
inadmissible, even when performed without auxiliary randomization.

We now make some comments regarding computation of the p values for the
¢T,, procedure. The article by AMP (1990) contained an efficient algorithm for
computing p values for the T}, procedure. With minor modifications this algorithm
can be used for the 7, procedure.

The goal of computational methods is to obtain p values by generating as few
tables as possible. The AMP algorithm used notions of “shortest path” (SP) and
“longest path” (LP) to attain considerable early stopping of table generation for
determining p values for the test based on T}, above. The AMP algorithm could
be modified as follows: During table generation, the algorithm could check the two

conditions

Z('I" —i)(c—Jzi; + SP> 1 (8)

and
Z(T‘ —1i)(c— j).’L‘ij + LP < tp, (9)

where 1o is the observed value of 7, and LP and SP are determined by Theorems
1 and 2 of AMP. If (8) holds, then every possible table completion will fall in the
rejection region, whereas if (9) holds, then every possible table completion will fall
in the acceptance region.

To this point the only departure from the AMP algorithm is that the inequality
in (8) is strict, so that tables will tend to go farther toward completion (i.e., in
AMP table generation also will stop if the left side of (8) is equal #p). A second
modification of the AMP algorithm is for tables such that T}, = tp, we still would
have to compare the probability of the generated table to that of the observed table

to decide whether or not to include the table in the rejection region.

2. EVALUATION OF TESTS

In this section we discuss the following two examples:
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(1) The exact test based on I" does not have convex acceptance sections and thus
is inadmissible by virtue of Theorem 1.1. We illustrate a better test and show that
the amount of improvement in power is considerable. For this same example we find
the conditional power of the tests T}, and ¢1,,. We also compare the conditional
values for these two tests. We will see that the p value for the test based on @7,
seems more sensible. Although we show the preceding results for a single 3 x 2

table, it is expected that such results will carry to general tables in many cases.

We remark that in tables of order r X 2 or 2 X ¢, the test based on C' — D is linear
in the yi;s with nonnegative coefficients. Therefore, this test clearly satisfies the
conditions of Theorem 1.1 and is admissible provided randomization is done only

at extreme points of a convex acceptance region.

(2) For tables where » > 3 and ¢ > 3, we show by example in a 3 x 3 table
that the test based on C — D does not have convex acceptance sections and thus is

inadmissible.

Additional remarks will be made in discussing each example.

Example A. We study a 3 x 2 table (Table 1) whose marginal totals are drawn
from the example in Table 1 of Patefield (1982).

The .01 size conditional test based on I' is

<pl"(y11v y21) =1if (yllnyI) = (51 15)1 (51 14)1 (4’ 15)1 (47 14)
= .35572 if (yllnyI) = (5a 13)
= 0 otherwise, (10)

The .01 size conditional test, which is uniformly better than or, is

©* (Y11, ¥21) = 1if (11, 921) = (5,15), (5, 14), (4, 15), (3, 15),
= 8/11 if (y11,y21) = (4,14)
= .59382 if (v11,y21) = (5,13)
= 0 otherwise. (11)
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Table 1. Examination Results Compared With Tutor’s Prediction

Treatment Control

B: Better than predicted 5
S: Same as predicted 19
W: Worse than predicted 8

15 17 32

For this same example we study the size .01 tests based on T}, called ¢r,, a better
test <p*Tp, and the test ¢7,,. All the tests are determined as follows:

$1, = 1if (yllsy21) = (51 15); (5, 14)’ (4a 15)
= 70431 if (y11,y21) = (5,13), (4,14), (3, 15)
= 0 otherwise, (12)

o7, = 1if (411, 921) = (5,15), (5, 14), (4, 15), (3,15)
= .62367 if (y11,y21) = (4,14)
= 77472 if (y11,y21) = (5,13)
= 0 otherwise, (13)

and

er,. = 1if (y11,921) = (5,15), (5, 14), (4,15), (3, 15), (5,13)
= 49463 if (yn,y21) = (4, 14)
= 0 otherwise. (14)
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Table 2. Power Functions of Five Tests for Example A

Power
Odds ratios er p* P, T, PTy0
1.00 1.00 .0100  .0100  .0100 .0100  .0100
1.00 1.78 .0381 .0392 .0377 .0381 0367
1.00 4.00 1274 1496 1374 1440 1370
1.00 16.00 .2885 4588  .3998 4502 4394
1.00 inf 3597 7451 6311 7451 7451
1.78 1.00 0264  .0271  .0280 0282  .0296
1.78 1.78 .0880  .0880  .0880 .0880  .0880
1.78 4.00 .2545 2663  .2556 2591 .2502
1.78  16.00 .5022 6329  .5819 .6205  .6050
1.78 inf 5879  .8953  .8048 .8953  .8953
4.00 1.00 .0665 0737  .0789 0811 .0902
4.00 1.78 1861 1928 .2000 2020 2135
4.00 4.00 4492 .4492 4492 4492 4492
4.00 16.00 7603  .8061 .7809 7945  .7800
4.00 inf 8366 9799  .9381 9799 9799
16.00 1.00 .1389 1723 .1895 .1094 .2332
16.00 1.78 3198 .3646  .3896 4029 4505
16.00 4.00 .6355 .6633  .6832 6914 7264
16.00  16.00 9297 9207 9297 9297 9297
16.00 inf 9828 9994  .9945 9994 9994
inf 1.00 1878 .2475 2752 2929 .3494
inf 1.78 3907 4741 5129 .5375  .6165
inf 4.00 7023 7706 8022 8224 .8870
inf  16.00 9590 9724 9786 9825  .9951
inf inf  1.0000 1.0000 1.0000  1.0000 1.0000

15

Here the test in (12) is the exact test of size .01 based on the AMP (1990)
statistic. It randomizes with the same probability on all points for which T, = 94;
That is, (y11,y21) = (5,13), (4,14), and (3, 15). Note that the point (4, 14) is not
an extreme point of a convex acceptance region. The test in (13) is constructed to
beat the test in (12). The point (3, 15) is taken out of the acceptance region, and
hence the points (4, 14) and (5, 13) become extreme points on which randomization

is permitted. The test @1, in (14) randomizes only on an extreme point (4, 14) of

its convex acceptance region.
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Table 3. Conditional p Values for Tests ¢, and @7,

Table p value
T11 21 PT, PTpo
0 15 .3092 1461
1 13 .3092 .1492
1 14 1461 0525
2 11 .3092 2178
2 12 1461 0630
2 13 .0524 .0138
3 9 .3092 .3092
3 10 1461 1461
3 11 .0524 .0295
4 7 .3092 1804
4 8 .1461 .1004
4 9 .0524 .0524
4 10 .0133 .0133
4 11 .0022 .0009
S ) 3092 1473
5 6 1461 .0559
5 7 0524 .0188
5 8 .0133 .0068
5 9 .0022 .0022
S 10 .0002 .0002

In Table 2 we note that both (,o}p and @7, are more desirable than ¢,. (They
also are preferable to o as well.)

In the above comparison of the five tests, it really only makes sense that each
test have the same size. Otherwise, the comparisons of power would not be valid.

Another item of some interest to be noted from the table is that when the two
odds ratios are equal, all tests have the same power. This can be demonstrated
mathematically using the formula

r11,.c11+z21 773 2 .
P D IG5 jzl%!

Z11,.221 773 2 ..
> pitps Hi:l, j=1z‘¢J!
{z€Z}

p(X =zm) =

where p1 = p11pe2/p12p21 and pa = po1psz/p2ops:-
It turns out that the sample points where randomization is required by the various
tests all have the same conditional probability when the odd ratios are equal.

In terms of conditional p values, we note the discrepancy between the tests pr,
and pr,, in Table 3. Table 3 is based on the marginal totals of Table 1, and it lists



A STUDY OF SOME TESTS OF TREND IN CONTINGENCY TABLES 17

several possible observable tables for the given marginals. This is accomplished by
noting the coordinates.

For those observable tables whose p values are less than or equal to .3092 the table
contrasts the p value for the two tests. We note many tables with large discrepancies
and note that the p value for the @1, test is much more refined. We also note in
passing that, for Patefield’s example, the observed table was (z11,z21) = (5, 8) and
the contrast in p values was .0133 versus .0068.

Remark 2.1. Although our results regarding inadmissibility and p values are noted

for this example, it is clear that many examples could be found.

Remark 2.2. The discrepancy between @7, and @7, will be less marked if the total
sample size n is very large. For large n, Simon (1978) studied the “efficacy” (some
measure related to asymptotic local efficiency) of the various possible indices that

can be used as test statistics. Many of the indices have the same efficacy.

Table 4. Frequency of Visits by Length of Stay for 132
Long-Term Schizophrenic Patients

Length of hospital stay

At least 2 ﬁea.rs At least 10 years
Frequency but less than but less than At least

of visiting 10 years 20 years 20 years Total

Goes home, or

visited regularly 62
Visited less than
once a month.

Does not go home. 27

Never visited and

never goes home. 43
Totals 58 45 29 132

Example B. We consider a 3 x 3 table (Table 4) whose marginal totals are drawn
from the example in Table 4 — 1 of Fienberg (1980). Label a possible observed table
with the above marginal totals as (211, Z12, T21, Z22)-

Now consider the following three observable tables: T} = (54,8,4,5), Ty =
(56,6,2,5), and T3 = (58,4,0,5). The C — D values for these three tables are
3,415, 3,421, and 3,419. Because 15 is a convex combination of T} and T3, we note

that the acceptance region of the C' — D test is not convex for any critical value
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between 3,419 and 3,421. Hence the example shows that C — D generally cannot
be admissible if » > 3 and ¢ > 3.

Remark 2.8. One might question whether the test based on I' still would be inad-
missible if the alternative space were enlarged. The alternative we consider, called
likelihood ratio dependence is implied by what is called quadrant dependence. (See,
for example, Ledwina 1984). The fact that the acceptance sections for ¢r are not
convex implies that it also would be inadmissible for a quadrant dependence alter-
native. This follows because ¢r would be inadmissible for a totally unrestricted

alternative.

Remark 2.4. Counsider the statistic T in equation (4), of which T}, is a special case.
The statistic T is a function of {y;;} and as such can be checked as to whether or
not it satisfies the properties of Theorem 1.1. Special cases of T for different uls
and v;-s may of particular interest. In any case such statistics can be studied, just
as T, was as to its properties by the methods in this article.
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