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AN UNFOLDING OF DEGENERATE
EQUILIBRIA WITH LINEAR PART 7' =y, y = 0.

GIL-JUN HAN

ABSTRACT. In this paper, we study the dynamics of a two-parameter unfolding sys-
tem 2/ = y,y = By+af(z, a)Lzyt+yg(z), where f(z, @) is a second order polynomial
in z and g(z) is strictly nonlinear in z. We show that the higher order term yg(x)
in the system does not change qulitative structure of the Hopf bifurcations near the
fixed points for small « and S if the nontrivial fixed point approaches to the origin
as o approaches zero.

1. Introduction

Consider

/

¥ =y+ F(z,v)
Y G(z,v), (1.1)

where F and G are strictly nonlinear in x and y. Then the system (1.1) has a double

(6 o)

at the origin. (i.e., The origin is a nilpotent singularity). Takens [4] has shown that

zero eigenvalue and has a linear part

this class of systems can be put into the normal form:

u=v+ Z bou™
n=2

Vv = Z anu”. (1.2)

n=2
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Bogdanov [2], Guckenheimer and Holmes [3] and Arnold [1] have chosen the alter-
nate normal form for this problem:

U=V
V=Y a.U"+V Y nb U, (1.3)
n=2 n=2
which is obtainable from (1.2) via the near-identity transformation
u=U
v=V - bU"

n=2
Assume that a,, in (1.3) vanish for all n and further assume that by does not vanish.
Then the system (1.3) has the following type of system:

=y
Y = y(az + g(z)), (1.4)
where g(z) is strictly nonlinear in z. The system (1.4) has a line of fixed points

y =0 for all z.
Now, consider the following unfolding system:

=y

¥ =By + af(z, ) + azy + yg(z). (1.5)
The fixed points depend only on the term af(z,a). Clearly the number of fixed
points can be infinite and hence the unfolding system has codimension infinity and
therefore is impossible to analyze. In order to mimic this problem, we simplify
the problem by assuming that after unfolding, we have in addition to the origin
only one nontrivial fixed point. Therefore we think of the unfolding parameter o«

as controlling the fixed point while 3 introduces linear dissipation. With a suitable
rescaling, for any a+# 0, the possible cases can be reduced to two ([5]):

a=+1.

Fix a = —1. (There is a similar analysis for the case of a = 1). Then the system
(1.5) becomes

=y

¥ =Py +af(z, o) — zy + yg(z), (1.6)
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where f(z, @) is a second order polynomial in z and g(z) is strictly nonlinear in z.
In this paper, we show that if the nontrivial fixed point approaches the origin, then
the higher order term yg(z) in (1.6) does not change the qualitative structure of
the Hopf bifurcations near the fixed points for small « and £.

2. Unfolding Analysis

Assume that (0,0) and (z*,0) are fixed points of the system (1.6). Then one of
the fixed points is always a saddle and the other fixed point might undergo a Hopf
bifurcation on some values of a and 3. Note that yg(x) in (1.6) does not change
above property. Suppose that (0,0) is always a saddle. Then depending on the
form of f(z,a), we have one of the following cases:

(1) As a goes to zero, z* goes to zero.
(2) z* does not depend on a. (i.e., z* is a constant).

(3) As a goes to zero, z* goes to infinity.

Theorem 2.1. For the case of (1), the higher order term yg(x) in (1.6) does not
change the qualitative structure of the Hopf bifurcations near the fized points for
small o and S.

Proof. Assume that z* goes to zero as a goes to zero. Consider the simplified

system

=y

Y = Py + af(z,a) —xy. (2.1)

The Jacobian matrix J is the following:

B 0 1
= (afz(:v,a) -y ﬁ—w> '
So,
0 1
T lo0= (afz(o,a) B)
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and
T _ 0 1
@07\ afs(a*0) f-a*)
Therefore
detJ |0,00= —afz(0,a), trJ |o,0=F,
and

detJ |(g-,00= —afz(z*, ), trd |- 0= B —z". (2.2)

Note that (0,0) and (z*, 0) are the only fixed points for the systems (1.6) and (2.1),
and that the function f(z, a) is a second order polynomial in z, which implies

fz(0,0) = —fz(z*, ).

Therefore detJ |0y and detJ |(;- oy have the same value but different sign, so one
of the fixed points is always a saddle. Since we have already assume that (0,0) is
always a saddle, we find that

detJ |(0,0)= —afz(O,a) < 0.

Hence

detJ

@,0= —ofz(z*,a) > 0.

Because of (2.2), we might expect that § = z* is a bifurcation curve on which
(z*,0) for the system (2.1) undergoes a Hopf bifurcation. Actually, the eigenvalues
associated with the linearization of (z*,0) for the system (2.1) are given by

\ . B=3) % V=TT dof e, a)
1,2 = 2

and so those on the curve 3 = z* are given by
)\1,2 =i _af:c(x*, O!).

If we view (3 as a parameter, then we obtain

d 1
EB‘RC)\]Q Iﬂ—_—fb"" ‘2' ?é 0.

Hence it appears that a Hopf bifurcation occurs on 8 = z* for the system (2.1).
Therefore the fixed point (z*,0) for the system (2.1) has the following properties:
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(1) If 8 —z* > 0, then (z*,0) is unstable.
(2) If B8 —z* <0, then (z*,0) is stable.
(3) If 8 — z* = 0, then the fixed point (z*,0) undergoes a Hopf bifurcation.

Next, consider the system (1.6). The Jacobian matrix is the following:

0 1
I= (afz(w,a) — ¥+ yg:(z) B—w+g(w)) '
So,

0 1
J l(O,O)= (afI(O,a) :B)

J |(z=,0)= ( 0* ,..1 . )
af:(z*, @) B—z*+g(z*)
Since (0, 0) is a saddle, we might expect that 8 = z* — g(z*) is a bifurcation curve
on which (z*,0) for the system (1.6) undergoes a Hopf bifurcation. Again the
eigenvalues associated with the linearization of (z*, 0) for the system (1.6) are given
by

(6 —z* +g(z*)) £ V(B - z* + 9(z*))* + 4afs(z*, @)
2
and so those on the curve # = z* — g(z*) are given by

Mg = +iv/—af.(z*,a)

Ae =

and d 1
EBRe/\l’z lp=2*~g(z)= 5 # 0.
Therefore the fixed point (z*,0) for the system (1.6) also undergoes a Hopf bifur-

cation on 3 = z* ~ g(z*) and has the following properties:

(1) If B8 —=z* —g(z*) > 0, then (z*,0) is unstable.
(2) f B —z* —g(z*) <0, then (z*,0) is stable.
(8) If 8 —z* — g(z*) = 0, then the fixed point (z*,0) undergoes a Hopf bifurcation.

Since z* goes to zero as ¢ goes to zero and g(zx) is strictly nonlinear in z, both
Hopf bifurcation curves 8§ = z* and = z* — g(z*) pass through (o, 8) = (0,0).
Thus the curve 3 = z* — g(z*) for the system (1.6) is tangent to the curve 8 = z*
for the system (2.1) for small o and 3. Next, we introduce the following theorem to
check the stability of bifurcating periodic orbits.
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Theorem 2.2. (]3,6]) In a two-dimensional system of the form
4
z\ _ [0 ~w)/(= F(z,y,0)
(y> - (w 0 ) (“y) ! (G(fcay»o))’ &9

where F(x,y,0) and G(z,y,0) are strictly nonlinear in x and y, the stability of the
bifurcating periodic orbit is determined by

1
v = Té[szz + Fzyy + Gm:cy + nyy]
1
+ E[ny(Fzz + Fuy) ~ Gay(Gaz + Gy)
- zszz + Fnyyy]’ (24)

where all partial derivatives are evaluated at the bifurcating point (z,y, 1) = (0,0,0).
If v > 0, then the bifurcating periodic solution is unstable and if v < 0, then the
bifurcating periodic solution is asymiotically stable.

Recall from the above theorem that this involves putting the equation into a normal
form and then computing a coefficient, -, which is given by derivatives of functions
occuring in this normal form. First we transform the fixed point to the origin via.

T=z—2*
y=1y

@
]

and then apply Taylor series expansion of f and g with respect to # about % = 0,
so that (1.6) has the following system:

7 '__ 0 1 z
7]  \af:(@+z*a) 0/\ 7§
0
+ (—*-———l“f”@;z"“ 2+ (ga(2+2*) ~ 1)5617) (2.5)

(2B 52 4 ()

at 8 —x* + g(z*) = 0, where all derivatives are evaluated at & = 0 and h(%) is a
third or higher order polynomial in Z. We put the linear part of (2.5) in normal

form via the linear transformation:

(5) = (veermreans o) (3):
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under which (2.5) is transformed into the following system:

() - (vrarrema 7))

afsz(Z+z",a) 2 (= *
2\ﬁaf£(i+z.,a)'v + (9z(Z + z*) — Duv

tu(eEE,2 | fi(y)) : (26)
S

where again all derivatives are evaluated at Z = 0 and fz(v) is a third or higher
order polynomial in v. Note that the system (2.6) is exactly in the form of (2.3).
And we can easily check that the term A(v) in (2.6) does not affect the normal form
coefficient «.

Let

_ ofz(T+ 7, ) jz=0
2v/—afz(Z + z*, ) Jz=0
gzz(Z + z*,0) |z=0

v2 + (gz(Z + %) |z=0 —1)uv

+ 5 wv?
G=0.
Then from (2.4),
—i(F + Fuw) + = Fouo(Fuu + Fuv)
’y 16 ULy UV 16\/_afi (E + m*’ a) uv uy vU/y
which goes to
1 S s 9:(T+2*,0) fee(Z + 2*,0)  fzz(Z+ 2, Q)
ST A\YTE Py 0 - - —
16(9 (Z + z*,0) AT FREEwpY )

as « goes to zero, where all derivatives are evaluated at Z = 0. A simple calculation

shows that as « goes to zero,

9z(Z + *,0) [z=0 fz:(Z+ z*, &) |z=0
fi(ﬁ + w*, a) Ii:o

9zz(T+ z*,0) |z=0 —

— K,

where k is a constant and

fz2(Z + 2%, @) |z=0
f:?(j + m*’a) 'i:o

—+ Fo00.
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Therefore _
f:ii(x + .’L'*, a) |:":=:0)

as « 0.
fz(Z + 2%, @) |z=0 —

1

Y E('ﬁ +

Denote
fz2(Z+ 2%, 0) [z=0
f2(Z+2*,0) |z=0
Then for small @ and 3, the stability of a periodic orbit for the system (1.6) is
determined by 4. That means that if 4> 0, then the corresponding bifurcation is
subcritical to an unstable periodic orbit. On the other hand, if ¥ < 0, then the
corresponding bifurcation is supercritical to a stable periodic orbit. For the system

.

(2.1), we can easily show that x = 0. Therefore we have

~

fzz(Z+ 2", ) |a=0 _
16fz(Z + z*,0) |z=0 16
Thus the stability of the periodic orbit of system (2.1) is determined by ¥ too.
Therefore we have the following conclusion:

as «a— 0.

’Y—)

If (z*,0) undergoes a Hopf bifurcation for the system (2.1), then (x*,0) undergoes a
Hopf bifurcation for the system (1.6) and the stability of the corresponding periodic
orbit for the system (1.6) is the same as the stability of the periodic orbit for the
system (2.1) for small o and 3. Note that for the cases of (2) and (3), we can easily
show that there cannot be a Hopf bifurcation locally. O

From the Theorem 2.1, we give the following corollary.

Corollary 2.3. Consider the system (2.1). Assume that (0,0) is a saddle and that
(z*,0) undergoes a Hopf bifurcation for some values of a and 3. Then the followings
are satisfied:

(1) If z* > 0, then the corresponding Hopf bifurcation is subcritical to an unstable
periodic orbit.

(2) If z* < 0, then the correspondig Hopf bifurcation is supercritical to a stable
periodic orbit.

Note that if the coefficient of zy in the system (2.1) is +1, then the stability of

a periodic orbit switches.
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