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ON THE OPTIMAL COVERING OF
EQUAL METRIC BALLS IN A SPHERE

MinsHIK CHO

ABSTRACT. In this paper we consider covering problems in spherical geometry. Let
covyST be the smallest radius of ¢ equal metric balls that cover n-dimensional unit
sphere ST'. We show that covgST = § for2<g<n+1and 7 — a.rccos(;‘:li) for
q = n+ 2. The configuration of centers of balls realizing covyST are established,
simultaneously. Moreover, some properties of covgX for the compact metric space X
,in general, are proved.

1. Introduction

Packing (or Covering) problem has been an exciting topic throughout the history
of geometry. In its most general form, it asks for the optimal distribution of the
sets Xi, Xy, into a given space X. The classical problem is to find the most
‘efficient’ packing of (n — 1)—dimensional sphere in the n-dimensional Euclidean
space. It leads an outstanding, natural problem in non-euclidean category. Here we
are only interested in the following basic problem for the spherical geometry.

Covering (Packing)Problem on S™. : What is the smallest(largest) radius rq
of q equal metric balls that can cover(pack) S™? How must the balls be arranged to
achieve this minimum(mazimum), and when is there an essentially unique arrage-
ment?

Fairly recently, Grove and Wilhelm solved optimal packing problems on S™ and
derived some sphere theorems using them in [4].
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Recall that the ¢g-th packing raius of a compact metric space X is defined by

2packgX = max mind(p;,p;),
(1 4pq) 1<J

where the maximum is taken over all configurations of ¢ distinct points in X, and
the minimum is taken over all pairwise distances in any such a configuration. Then,
the followings are true :

Theorem(G-W). Let S} be an n-dimensional unit sphere with n > 2 ,then

(i) for2<qg<n+2,

)

- 1
pack, ST = pack, S~ = ~ arccos(

2 g—1

and the configuration of points realizing pack,ST is uniquely determined as the ver-
tices of a regular, inscribed (g — 1)-simplex in some totally geodesic S{’_2 C St C
R™1,

(i3) forn+3<qg<2n+2,

T

pack,ST = 1

and the configuration of points realizing packsST is uniquely determined as the
(xey, xez, -+ ,tent1), where (e1,€3,+* - ,ent1) is an orthonomal basis for R™t1.

The covering problem on S™ is motivated by the above result. Packing and
covering usually go side-by-side. There are dual covering problems to many packing
problems. Similar techniques may sometimes be used in both packing and covering
situations, even though we will use quite different method in this case.

In general, problems involving packing or covering with open or closed balls-
respectively-are often expressed in terms of arranging points so that they are not
too close or too far from each other. But it is an exceedingly hard problem to
determine the value and distribution of points realizing packy, X as well as cov, X (See
section 2 for the definition). It is still unsolved even for X = S?. pack,S? and the
corresponding arrangment of (open) balls have been found for ¢ < 12 and ¢ = 24.
The exact solutions of covyS? is known only for ¢ < 7 and ¢ = 10,12 and 14. For
other values of g, various upper and lower bounds for pack,S? (or cov,S) have
been obtained, but many of these could certainly be improved. (See [2,Chapter D].)
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The paper is organized as follows. In section 2 we define g-th covering radius of
a metric space and present some properties of covering radii. Section 3 is devoted
to the proof of our main theorem. Some spherical geometric lemmas are discussed
and the covering theorem is followed.

For basic results and concepts from spherical geometry and packing( or covering)
problems that will be used freely, we refer to [2] and [5].

2. Covering radii of a compact metric space

Recall that the radius of a compact metric space X is defined as radX =
min,e x maxqex d(p, q) ,which is related with the diameter by

rad X < diamX < 2rad X,

where the last inequality is strict for closed Riemannian manifolds. Clearly, rad X
is the smallest positive number r so that X can be covered by the closed ball
B(p,r) = {z € X|d(p,z) < r} for some p € X.

As we described in the introduction, we can define a non-increasing sequence,
so-called, covering radii as the dual notion of packing radii as follows :

Definition 2.1. Let X be a metric space and B(p, r) be a closed r-ball centered at
pin X. Then we call 74(p1,p2,: - ,pq) the g-th covering radius of X with respect
to {p1,p2,- - ,Pq},where 74: X? — R* U {0} is the smallest number satisfying

_E(pl,r) UF(pQ,T) U--- U—B—(pq, ’f‘) =X
for any g-tuple (p1,p2,- - ,pq) € X9. The g-th covering radius of X is defined by

covgX = min r4(p1,p2,"* ,Pq)
P11y sPq

In other words, X is covered by ¢ (overlapping) closed balls of radius cov,X, and
covy X is the smallest number satisfying this property. Moreover,we can view rad X
as the first term in a non-increasing sequence of covering radii, i.e.,

radX = covi X > coveX > -+ 2 covgX > --- > 0.
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The g¢-th packing radius is nothing but one half of the minimal distance between
pairs of points, if we know a configuration of points which realize an optimal packing.
But the situation is more complicated in the covering radii case. This is due to the
fact that an overlapping of metric balls is allowed in the covering problem. However,
the above geometric definition can be explicitly expressed as the following for the
compact metric space.

Theorem 2.2. Let X be a compact metric space, then

X = min dy(X RN = max min d(z,
covgX = min dp(X,{p1,pz - ,pg}) = min maxmind(z,p;),

where p; € X,i=1,2,--+,q, and dg 1s the classical Hausdorff distance.

Proof. Fix (p1,p2,-** ,Pq) € X9. Since X is covered by ¢ r¢-balls, for any x € X
there exist 7,1 < j < ¢, such that

d(w’pj) < Tq = Tq(pl’p% tee ,pq)'

Hence, clearly we have

maxmind(z, p;) < rg ().

On the other hand, let s = mea.;{(nun d(z,p;). Then, for any z € X,
x 11
min d(z, p;) < maxmin d(z,ps) = 5,
1 zeX ¢

which means B(p;, 8) UB(p2,8)U---UB(p,, 8) = X. Since r is the smallest radius
of ¢ balls satisfying the above property,

rznea)}(cmiind(:c,p,-) =821, (x*).

By combining (%) and (*x), 7¢(p1, P2, -+ ,Pq) = meajy(cm,in d(z,p;). But, by the defi-
x 2

nition of the classical Hausdorff distance,

dH(Xa {plap27"' ’pq}) ma.xd(x, {plva’ °e ’Pq}) ma.xmmd(a: pi) =Tq a.

As a metric invariant, the definition of covering radii leads that cov,X is a
continuous function on the space of compact metric spaces relative to the Gromov-
Hausdorff topology. We refer to the celebrated [3] for the Gromov-Hausdorff dis-
tance.
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Theorem 2.3. covgX is continuous relative to the Gromov-Hausdorff topology.

Proof. Let X and Y be compact metric spaces. Given ¢ > 0, choose § > 0 such
that § < . Suppose dg_g(X,Y) < 4, then there is, by definition of the Gromov-
Hausdorff distance, a metric d on X []Y extending the metrics on X and Y so that
the classical Hausdorff distance between X and Y in X [JY is less than or equal
to €. Moreover, given p;,x € X there are u;,y € Y such that d(p;,u;) < § and
d(z,y) < 4. By the triangle inequality,

d(pi, ) < d(ps, us) + d(us, ) < d(ps, us) + d(us, ) + d(z, y),

Hence d(p;,z) < 20 + d(u;,y) and consequently, covgX < 24 + covgY. By the
symmety, we also get covgY < 26 + covgX. Therefore, ' '

lcovy X — covgY | <26 < e O

3. Covering radius of a sphere up to n+2

Let Py, Py,--- ,Pp4+1 be vertices of a regular inscribed (n + 1)-simplex in ST.
Since P; + P+ -+« 4+ P, 1 = 0 as vectors in R™*1, the spherical distance between
each pair of vertices is equal to a,rccos(n‘—é) by applying the inner product. For
notational convinience, let ¢,, = arc’cos(ﬁﬂ.

From now on, we devote the rest of this section to compute the value of cov,ST
up to ¢ = n + 2 and, more importantly in the geometrical sense, determine the
configuration of ¢ points realizing cov,ST. In [4], they used the metric argument
for the determination of distribution of points realizing packyST. But the volume
argument seems to be much easier to treat for the covering radii case than the

metric one. We need the following lemma from [1] to use our method.

Lemma 3.1 (B8réczky). Let A be a (spherical) simplex in a closed ball B in ST
and Ag be an inscribed regular simplez of B, then the volumes vol(A), vol(Ag) of
the simplezes satisfy

vol(A) < vol(Ay)
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and equality is attained if and only if A and Ag are congruent.

Now we will return to our main concern - determination of cov,ST up to ¢ = n+2.
It can be easily checked that covyS] = % for the unit circle. For n > 2, it is clear
that cova ST = 5 and P is the antipodal point of P, if P, and P realize covaST.

Now consider the case for ¢ = n+1. One can observe that any distribution of n+1

points in ST is restricted, i.e., they must stay in some n-dimensional affine subspace
1k’
some k > 1. So consider the south and north pole of that subspace, then cov,4+1ST7

of R**! and hence in S,’:‘l, a sphere with radius = which is contained in ST, for

should be at least 3 in order to cover both poles. By the non-increasingness of cov,

we can get
s n no T
7= cova ST > covaST > -+« 2 coVp4+1ST = 7
Moreover, clearly we can not determine uniquely the configuration of points

realizing covyST for 3 < ¢ < n+1. So we have proved the first part of the following
theorem.

Theorem 3.2. Forn > 2,

™ g=1,
covy ST = % 2<g<sn+1,
m — arccos(;5y) ¢=n+2.

and the configuration of points realizing covn,42ST is uniquely determined as the
vertices of a regular, inscribed (n + 1)-simplex in ST. '

Proof. First let Py, P1,--- , P,41 be vertices of a regular inscribed (n + 1)-simplex
in S?. Let d(P;, P;) = £, for i # j and fix Py. Then we have d(—Po, P;) =7 — {5
fori=1,2,---,n+ 1.

Since Py, Py, -+ , Po+1 are contained in the (closed)(w — £, )-ball centered at — Py,
the common radius of n + 1 balls centered at Py, Ps,: - , P,+1 should be at least
m — £y, in order to cover the (spherical) n-simplex < P, P,---P,, >.

Since P is arbitrary and U?:ol < PyP;--- P...Py>= S7, m— £y, is the (n+2)-
th covering radius with respect to given {Po, Py,--- , Pp+1}. So, by definition, we
have

COVp42ST < m— £, (A)
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Now suppose {Qo, @1, - , @n+1} is a configuration of points in ST* which realize
cOVp1287. Choose any n+1 points from {Qg, @1, - , @n+1}, then they lie on Sp~!
forsomek>1.If ,for0<i<n+1,

dim(conv(Qo, @1, - ,@,' 3 Qnt1)) <1

i.e., they lie on some m-dimensional subspace for m < n — 1, then Qo, @1, , @n+1
lie on S7+~* for k' > 1. It means {Qo,Q1," - ,@n+1} cannot realize covn4257. Let
A =< QoQ1Q;- - Qns1 > be a (spherical) n-simplex in ST. Then

n+1
> vol(A¥) = vol(S7) = (n + 2)vol(Ao), (%)

=0
where Ay is a regular (spherical) n-simplex inscribed in the ball with radius= 7—¥¢,.
It is immediate from () that there is A7 having the largest volume and satisfying

vol(AY) > vol(Ag) (%%)

Let B; be the ball so that A7 is inscribed in Bj, then the radius of B; is greater
than or equal to m — £, by Lemma 3.1. So we have

COVp42ST > 7 — £y (B)

By combining (A) and (B), hence we get cov,2ST =7 — £,.

The above fact implies the radius of B; = 7 — £,, which means A7 is regular and
vol(A7) = vol(Ag) by (**) and lemma 3.1 again.

Since A7 realize the largest volume, we have the following fact from (*):

vol(A®) = vol(Al) = - -+ = vol(A™*!) = vol(Ao)
Therefore, {Qo, @1, ,Qn+1} are vertices of a regular inscribed (n + 1)-simplex in
sr. O
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