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ON CONSISTENCY OF SOME NONPARAMETRIC
BAYES ESTIMATORS WITH RESPECT TO A
BETA PROCESS BASED ON INCOMPLETE DATA

JEE CHANG HONG AND INHA JUNG

ABSTRACT. Let F and G denote the distribution functions of the failure times and
the censoring variables in a random censorship model. Susarla and Van Ryzin(1978)
verified consistency of I:"a, the NPBE of F' with respect to the Dirichlet process prior
D(a), in which they assumed F' and G are continuous. Assuming that A, the cumula-
tive hazard function, is distributed according to a beta process with parameters c, c,
Hjort(1990) obtained the Bayes estimator Ac o of A under a squared error loss func-
tion. By the theory of product-integral developed by Gill and Johansen(1990), the
Bayes estimator FC « is recovered from Ac a- Contmuxty assumption on F' and G is
removed in our proof of the consistency of Ac,a and Fc,a Our result extends Susarla
and Van Ryzin(1978) since a particular transform of a beta process is a Dirichlet
process and the class of beta processes forms a much larger class than the class of
Dirichlet processes.

1. Introduction and Summary.

Let X;,---, X, be independent and identically distributed(i.i.d.) random vari-
ables from a distribution F on [0, 00) having F(0) = 0 and let C,---,C, be ii.d.
random variables with cumulative distribution function(cdf) G on {0, 00). Assume
that the X; are independent of the C;. Let T; = min{X;,C;}, 6; = 1{x,<c,) for
each i = 1,--- ,n, and let H be the cdf of the i.i.d. random variables T;, T5, - - -
Then 1 - H = (1 - F)(1 — G). In the usual random censorship model one observes
only (71,61), -+ , (Tn, n).

The problem of constructing nonparametric Bayes estimators(NPBE) for F based
on the censored data (71, 01), - , (Tn,0,) has been considered by many authors by
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placing a prior distribution for F' on the space F of all cdf’s on [0,00). Using
the Dirichlet process introduced by Ferguson(1973), an NPBE for F based on the
censored data has been considered by Susarla and Van Ryzin(1978). Ferguson and
Phadia(1979) obtained an NPBE for F' with respect to the prior process neutral to
the right introduced by Doksum(1974).

Definition 1.1. (Ferguson and Phadia(1979)) A process F(t) is said to be a ran-
dom distribution function neutral to the right if it can be written in the form
F(t) = 1 — e B® where B(-) is a Lévy process with independent increments
such that (a) B(-) is nondecreasing a.s., (b) B(:) is right continuous a.s., (c)
limy, oo B(t) =0 a.s., lim;_,00 B(t) =00 a.s.

Ferguson and Phadia(1979) extends the result of Susarla and Van Ryzin(1978)
in that a Dirichlet process is a process neutral to the right.
Given a cdf F on [0, 00), the cumulative hazard function(chf) A is defined by

dF(s)
At) = /[O,t]m’ £>0. (1.1)
The formula (1.1) yields
F@t) = Fls,o0)dA(s 1.2
@)= [, FlsoodA() (12)

which is well known as the Volterra integral equation. The unique solution of F
determined by A in equation (1.2) is given in terms of the product-integral by

F(t)=1-]J(1-d4), t>0. (1.3)
[0.¢]
See Gill and Johansen(1990).

For an investigation of the survival phenomena chf A is an object as basic as
the survival function F. Let A be the space of all chf’s. Hjort(1990) introduced a
beta process for A with parameter functions ¢(-) and a(-) denoted by A ~ Be(c, o),
where c(-) is a piecewise continuous and nonnegative function on [0, co) and a(-) isa
chf. A beta process is an A-valued Lévy process with independent increments.(See
the definition of a beta process in Hjort(1990).)

The NPBE /Alc,a of A with respect to the beta process A ~ Be(c, a) based on
(T1,61), -+, (Tn, 6n) obtained by Hjort(1990) is given by



ON CONSISTENCY OF SOME NONPARAMETRIC BAYES ESTIMATORS -.- 125

A cdo +dN
Aot _—./ —_— 1.4
0= Fry (1)

where

N(t) = z Lini<t,6i=1}
i=1

Y() = lrzg- (15)

Viewing definition 1.1, if A is a beta process, then the random distribution F
given by (1.3) is a process neutral to the right. By a substitution of (1.4) into the
right hand side of (1.3) we obtain an estimator Fc,a of F given by

Foa(t)y=1-[[(1-dA,a), t>0. (1.6)
[0,2]

Using the fact that the posterior of a beta process given data is also a beta
process and a beta process has independent increments, one can easily see that F’c,a
is a conditional expectation of F' given data. Therefore we see that the estimator
Fc,a given in (1.6) is an NPBE of F' with respect to a process neutral to the right
under a squared error loss function.

Let (Q, F, P) be the underlying probability space for this model and take filtra-

tion as

ft = G{I{TiSS,&-:l}) l{TiZS} :0 S ) _<_ t, 1= 1, te ,n}, t Z 0. (17)
Now, (Q,F,{F; : t > 0}, P) is the stochastic basis for this model. Thus, the

estimators flc,a and ﬁ‘c,a can be written as the conditional expectations

Aco(t) = E(A(t)|Fs, s > 0)

t]

Fc at) = E(F(t)|Fs,s 2 0). (1.8)

’

Our goal is verifying consistency of the NPBE’s flc,a and ﬁ‘c,a in the frequentist’s
view by assuming that

(A1) Xi,---,X, areiid. random variables with a fixed unknown distribution Fj
on [0, o),
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(A2) Ci,---,C, are iid. random variables with an unknown distribution G on
[0, c0).

On this assumption the random variable T; = X; A C; have cdf Hy given by

1-Hy=(1-Fo)(1-G). (1.9)

Let Ap be the chf corresponding to Fy, i.e.,

Ao(t)=/[ dFo(s) 45, (1.10)

0, Fols,00)” ~ =

Consider the process M on [0, c0) given by

M(t) = N(t) /0 ‘Y, (1.11)

where Ay is given by (1.10) and the processes N and Y are given by (1.5). It is
well-known that the process M is a square-integrable zero mean martingale with
respect to the filtration in (1.7) and it has the predictable variation process (M, M)
given by

(M, M)(t) = /0 tY(l — AAg)dA,. (1.12)

This is the unique, nondecreasing, predictable process such that M2 — (M, M) is
again a martingale.

Susarla and Van Ryzin(1978) verified consistency of F,, the NPBE of F with
respect to the Dirichlet process prior D(a), where a(-) is a finite non-null measure
representing the parameter of the Dirichlet process, in which they assumed £’ and
G are continuous. Continuity assumption on F and G is removed in our consistency
proof. Our result extends Susarla and Van Ryzin(1978) since a particular transform
of a beta process is a Dirichlet process and the class of beta processes forms a much
larger class than the class of Dirichlet processes.(See Hjort(1990).) Section 2 treats
the mean square consistency using some martingale techniques. Section 3 treats

almost sure consistency.

2. Mean square consistency
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Assume the conditions (A1) and (A2) given in section 1. Let A., and F,,
be given by (1.4) and (1.6), respectively. In this section we prove mean square
consistency of flc,a and ﬁ‘c,a by assuming further that the parameter function ¢(-)
of the beta process Be{c, a} is bounded by a positive constant K > 0 so that

(A3) 0<c(t)<K, t>0.

The function c(-) plays the role of prior number at risk and the assumption (A3)
seems not unreasonable. Using (1.11), /ic,a can be written as

. tdM e ty
N — - 1
Acalt) /0 C+Y+ i C+Yda+/0 +YdAo (2.1)

Since (c +Y)~! is bounded and predictable, the first term in the right hand side
defines a square-integrable, zero mean martingale with predictable variation process

(25 ] 200 -] () onm
_ /0 ( 1 ) (1= Ado)dAs. (2.2)
Thus, we have
E ( /0 t CiMY) =0, (2.3)
p([[ B0 - [ 5L - st 24

Since flc,a (t) is a conditional expectation given data, it can be easily seen that

E(Aca(t) — EAc o)) (BAca(t) — Ag(t) =0 (2.5)
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and from which together with (2.1), (2.3) and (2.4) we see that

( (t) AO(t)) (t) EAC a(t)) + (EAC,a(t) - Ay (t))z

t c ¢ 2
- E dA _
{ o c+Y <c+Y c+Y) °+/0 <c+Y Ec+Y> da}

+ (BA, o(t) - Ao(t))2

toam 1° tlo¢ 2
< Bl _
_3E[/0 c+Y} +3E[/0 (c—i—Y Ec+Y>dAO]

+3E [/Ot (CfY - chy) dar + (BAca(t) — Ao(t))?. (2.6)

The last inequality in (2.6) uses the fact that (a + b+ ¢)? < 3(a? + b + ¢?) for
all real numbers a, b, c.

Lemma 2.1. Assume that conditions (A1), (A2) and (A3) hold. Then for each
t > 0 we have

o) ]l 1+K
5 [M] S 2T Holto)’ (27)
Y(?) 2 1
B [(C(t) + Y(t))2] Sa1s Ho(t—)’ (2.8)
ety 1°_ 2 1+K \?
o [M} =z (T——HOG—")> ' (2.9)

Proof. The following computations will be based on the fact that Y (¢) is a binomial
random variable with parameters n and 1 — Hy(t—~), where Hy is the cdf of the
random variables T; = X; AC;, =1,--- ,n
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[RB%%75]=§;<1> 321(_4%( —)) Ho(t—)"~7
SJZO( )C(]t++11(1_ o(t=))? Ho(t—)"9

R P (n ) Hofey ey

1 )+l &
T n+11-— Hy(t )J=
1 1+K
_TL].—-Ho(t—-),

which proves (2.7). Similarly (2.8), (2.9) can proved easily.

(") - Ho-y Hatey
1

Lemma 2.2. Assume that conditions (A1), (A2) and (A3) hold. Then, for each
t > 0 we have

o[ [ 5] <t o1
NS  EYITEYY S
o[ (v -reiv)e] <R {imS). ew
Phcatd Ao < 5 () i+ 40 @)

Proof. Since 0 < AAq < 1, it follows from (2.4) and (2.8) that

taMm 12 Y
E < | E—X __da
[/o c+Y} ‘/o (c+Y)2°

2 [t 1
< Z - -
~—n /0 1- Ho(s—)dAO

2 Ao(t)
nl-— Ho(t )

< -
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which proves (2.10). From (2.11) observe that

t c 2 2
{/0 (C+Y—Ec+y)dA0} <A0t)/ <c+y EC+CY> Ay (2.14)

holds by the Holder inequality. Then by (2.9) and (2.14) we have

E[/o‘ <c_fY_Ec+Y)dAO]2<AO t)/ var( +Y)dA0
2
SAo(t)/o E<—cfy> dAo

SAO(t)%(l‘*‘K)z/O mdflo
2 [(1+K)A(t))?
Sﬁ{ 1—Ho(t0—) } ’

which proves (2.11). (2.12) can be proved similarly. Finally, using (2.7) we see that

[EAco(t) — Ao()]? = [ / t E——d(a— Ao)] :
<2[/E da] +2[2/0t CfY r 2
e[| <2 s el

2
() 0o+ 450),

IA

which proves (2.13).
Applying lemma 2.2 to the right hand side of (2.6) we have

Theorem 2.3. Assume that conditions (A1), (A2) and (A3) hold. Then, for each
t>0

ElAc.a(t) - Ao(t)) < X, (2.15)

where v, is a constant depending on t.
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Corollary 2.4. Assume that (A1), (A2) and (A3) hold. Then for each t >0
E[F, o(t) — Fo(t)* — 0 asn — oo. (2.16)

Proof. Since F, ,(t) and Fp(t) are cdf’s, {(Fealt) — Fo(t))?} forms a uniformly
integrable sequence of random variables. Since F ,(t) and Fy(t) are defined by
the product-integrals of Ac,a(t) and Ap(f) and the product-integral operator is a
continuous mapping, it follows from theorem 2.3 that '

~

Foalt) 55 Fo(t) asn — oo, (2.17)
Uniform integrability of {(F .(t) — Fo(t))?} together with (2.17) implies (2.16).

3. Almost sure consistency.

Let A ~ Be{c,a} be the beta process and let (2, F,{F; : t > 0}, P) be the

stochastic basis as given in section 1. Consider the sequence of increasing o-fields,

Fn= a{l{TiSt,dizl}’ 1{T¢Zt} 2> O, 1= 1, T ,n}, n= 1,2, Tt (31)

Then the NPBE A, given in (1.4) and (1.8) can be rewritten as E(A(t)|F»). In

order to clarify the dependence in the sample size n of the NPBE flc,a we write as

An(t) = Aco(t) = E(AQR)|Fn). (3.2)

Lemma 3.1. Assume that conditions (A1), (A2) and (A3) hold. Then for each

fized t > 0, sequence of random variables {An(t) : n = 1,2,---} is a uniformly
integrable martingale with respect to the o-fields {Fn :n=1,2,---}.

Proof. It is obvious that A,(t) is integrable and F,-measurable for each n =
1,2,---. Since

E(Ant1(t)|Fn) = E[E(A®)|Fns1)|Fn] = B(A(t)|Fn) = Anl?)
we conclude that {A,(t) : n = 1,2,---} is a martingale with respect to the o-
fields {F : m = 1,2,---}. Uniform integrability of {A,(t) : n = 1,2,---} follows
from observing

E|An(t) — Ao(t)] < (E[An(t) — Ao(t))?)/? = 0 as n — co.
(See theorem 10.3.6 of Dudley(1989).)
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Theorem 3.2. Assume that conditions (A1), (A2) and (A3) hold. Let {A,(t) :
n=1,2,---} be the {F,}-martingale given by (3.1) and (3.2). Then for each fized
t >0, {An(t)} converges almost surely to Ao(t).

Proof. Since {Ayn(t)} is uniformly integrable, sup,, E|A,(t)] < co. (See theorem
7.5.4 of Ash(1972).) By the martingale convergence theorem, {A,(t)} converges
almost surely to a random variable, say Ao (t), as n — oco. Since {An(t)} con-
verges in probability to Ag(t), {An(t)} converges almost surely to Ag(t) through a
subsequence. Therefore the limits A (t) and Ap(t) must coincide almost surely.

Let ﬁ‘c,a be the NPBE given by (1.6) and (1.8). Paralleling with (3.2) write
Fu(t) = Fea(t) = E(F(8)|Fn), (3.3)

where F, is the o-field given by (3.1). Since F,,(t) and Fy(t) are the continuous im-
ages of An(t) and Ag(t) under the product-integral operator, we have the following
corollary to theorem 3.2.

Corollary 3.3. Assume that conditions (A1), (A2) and (A3) hold. Then for each
fired t > 0, {E,(t)} converges almost surely to Fo(t) as n — oo.
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