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STABILITY THEOREM FOR THE FEYNMAN INTEGRAL
APPLIED TO MULTIPLE INTEGRALS

Bong JiN KiMm

ABSTRACT. In 1984, Johnson [A bounded convergence theorem for the Feynman in-
tegral, J. Math. Phys. 25 (1984), 1323-1326] proved a bounded convergence theorem
for the Feynman integral. This is the first stability theorem of the Feynman integral
as an L£(Lz(RN), Lz(R")) theory. Johnson and Lapidus [Generalized Dyson series,
generalized Feynman digrams, the Feynman integral and Feynman's operational
calculus. Mem. Amer. Math. Soc. 62 (1986), no. 351] studied stability theorems
for the Feynman integral as an L£(Lz(R"), L2(R"™)) theory for the functionals with
arbitrary Borel measure. These papers treat functionals which involve only a single
integral. In this paper, we obtain the stability theorems for the Feynman integral as
an L(L1(R), Loo(R)) theory for the functionals which involve double integral with
some Borel measures.

1. INTRODUCTION AND PRELIMINARIES

The theory of quantum mechanics is based on the Schrédinger wave equation. In
1948, to solve the wave equation, Feynman [3] introduced an integral, so called the
Feynman integral (cf. Johnson and Lapidus [7]). In 1968, Cameron and Storvick (1]
defined an integral, the operator valued function space integral, which the nearest
concept to the original Feynman’s suggestion (cf. [7]). Kim and Ryu (8] established
the existence theorem for the operator valued function space integral as an operator
from L;(R) to Loo(R). The functionals introduced in the Feynman integral are
defined in terms of measure and potentials. It is natural to ask if the corresponding
operators are stable under perturbations of either of these objects.

In this paper, we obtain the stability theorems for the Feynman integral as an
operator from Lj(R) to Lo (R) for the functionals which involve double integrals

with some Borel measures.
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Now we present some necessary notations, lemma and definitions which are

needed in our subsequent section.

A.

(1.1)

(1.2)

Let Cla,b] will denote the space of all real-valued continuous functions on
[a,b] and the Wiener Space, Cy[a, b], will consists of those z in C[a, b] such
that z(a) = 0, and m,, will denote Wiener measure on Cy|a, b].

Let M[a, b] denote the space of all complex Borel measures on [a, b] such that
if p is the continuous measure in M|a,b] then the Radon-Nikodym deriva-
tive d|p|/dm; exists and is essentially bounded, where m, is the Lebesgue
measure (cf. Reed and Simon [9]).

For 2 < r < 00, let Ly, := L1,([a, b]? x R?) be the space of Borel measurable
C-valued functions @ on [a, b]? x R? such that

18]l = { / b / " 16(a, .- ')||1idmz(3)dmz(t)}%< o,

ie., 6 is in Ly, if and only if 6(s,t,-,-) is in Ly (R?) for almost every (s,t)
in [a,b]? and ||0(s,t,-,-)|l1 is in L,([a,b}?). Note that the mixed norm space
Ly, equipped with the norm || - ||;,, becomes a Banach space and Ly, C Ly,
ifl<s<r<oo.

Let F be a real or complex functional defined on Cla,b]. Given A > 0,
¥ € L1(R) and £ € R, let

(\(F))(€) = / FO o+ 9 (8) + £)dmu (@),

Cola,b]

If IN(F)vy is in Loo(R) as a function of ¢ and if the correspondence 1 —
I\(F)4¢ gives an element of £(L;(R), Loo(R)), the space of bounded linear
operators from L1(R) to Lo (R), we say that the operator valued function

space integral I (F) exists for A.

For 8 € Ly,, and (3, 7 be continuous measures in M|a, b], let

(1.3)

F(y) = /[a’b] /[a,,,] 6(s,t,u(s), y())dB(s)dn(t)

for any y € Cfa, b], for which the integral exists.
Then for every A > 0 and every £ € R, F()\_%:z: + £) is defined for m,, X my-a.e.
(z,€) € Co[a,b] x R (cf. Kim and Ryu [8]). '
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Lemma 1.1. For any nonnegative integer qo, v > 2 and v’ satisfying %+ % =1, we

have
_l,_
o 2q i
(1.4) A(2qp:-:7") = / [(r1—a)(ra —r1)- - (b—rag)] 2d 'xo T
A2qo i=1
r L
I'((2q0+1)(1 - 5))
where
(1.5) Doge = {(T1,+++ ,T2ge) € [a,0]*P 1a < 7y < -+ < 1ggy < b}
Proof. See Kim and Ryu {8]. O

Definition 1.2. Let A(:,A) be of class Ly (R) for each A in a domain Q of the
complex A-plane. We shall say that A(-, A) is a weakly analytic vector valued function
of A throughout Q if for each ¢ € L1(R), [0 A(£, \)@(£)d€ is an analytic function
of A in Q. '

Definition 1.3. Let € be a simply connected domain of the complex A-plane whose
intersection with the positive real axis is a single nonempty open interval (o, 8). Let
F be a functional such that I(F) exists for A € (a,3). For each 9 € Li(R) let a
function A(X : ¢) exist as a weakly analytic vector-valued function of X for A € Q,
A(X: 9) € Lo(R) and let A(X : ) = I\(F)y for A € (a,8) and ¢ € Li(R); then
we define
MEFYY = AN :y)

for A € Q and ¥ € Ly(R). I3"(F') is called the analytic operator valued function
space integral.

We note that, if I{"(F) exists, it is uniquely defined and is a linear operator that
takes L1(R) into Lo (R).

Definition 1.4. Let ¢ be a real number, ReA > 0, and F be a functional such
that I3"(F)vy exists for every ¢ € L1(R). If Q(-) is of class Loo(R) and % is a given
element of L;(R) such that

Jm [T EE - Qv =0
ReA>0 e
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for every ¢ € L1(R); then we define

Jo(F)p = Q.

If J,(F')4 exists for every 1 € L1(R), Jg(F) is called the operator-valued Feynman
integral of F' and we note that J;(F) is a linear operator, uniquely defined by the
above equation which takes L;(R) into Lo (R).

2. STABILITY IN THE POTENTIALS

Theorem 2.1. Let B and n be continuous measures in M[a,b] and let H € Ly,
r € (2,00|. Let 6N) N =1,2,--- be complex valued Borel measureable functions

on [a,b)? x R? such that for 8 X n X my X my-a.e.,
(2.1) ) — 9 as N — oo and 6| < H.

Then 0 and 6Y) belong to Ly,.. Moreover, let
(22) R = [ 06tv6)u@) ]

for y in Cla,b]. Let FY) e defined in (2.2) with 0 replaced by 6N). Then for
all real ¢ > 0, Jy(Fy) and Jq(F,(LN)) exist and for each N € N and as N — oo,
Jq(F,(lN)) — Jy(Fy) in the operator norm.

Proof. By (2.1), |8™)|1, < [|H||1r for N = 1,2,--- and so 8V) and 6 are in Ly..
From [8] and the above definitions, we can easily obtain, for each N € N, J,(Fy)
and Jq(F,sN)) exist for all real ¢ > 0. For each ¢ € L;(R) and ¢ > 0,

(23) |Ta(FM)0(€) - Jo(Fa)b(€)]

_ [ M(“’q) T 1= )2 =) (b= ram)]”

(tlv atm;kly akm)EP

2m+1 times

/ / 9( Y7452 Thy > Ve Uy )P (V2msn)

N

2m+1 . . 2 omr1
-exp{ Z M}d i my(v,) d >< up‘ (rn)

= 2(7‘j — T‘j_l) n=1
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B /Azm(—zq> ) [(7‘1—a)(;'2*7‘1)"'(b""2m)]_

(tla b 7tm1k11 . 7km)EP

2m+1 times
e N m

./oo /oo He(rtj,rk,-,vtj,vkj)¢(v2m+1)

=

—o0 -0 i1
2m+1 . 2
’Lq('l)j - 'Uj—l) 2m+1 2m _
‘e —— 3 d X d x T
WY 2 gy [ ) X B

2m+1
2

<l X (5)

(tl,"',tm,kl,"',km)EP

m
(N
9 ) Ttarkavt,vk o(rt‘ark'avt"vk')
) J J J v J 7
R2m _

j=1

(/A [(r1 —a)(ra —7r1) -+ (b— 7.2m)]—%

where {71, - ,T2q,} is the set of numbers sy, -+, 54,1, -+ , %4, in some rearrange-
ment, P is the set of all permutations of {1,2,---,2qo}, s; := Tmjy tj = Tk;, and
[ fdiip;(r;) means that [ fdB(r;) when r; = rp; for some rm; and [ fdjip(r:)
means that [ fdn(r;) when r; = Tk; for some ry,. Since

1o (FENY = Jo(Fa)dlloo < 9l (I9a(EN + 1 Tg(Fu)l) < oo,

we obtain the inequality in (2.3) from Kim and Ryu [8], elementary calculus and

Fubini theorem. Thus we have
(2.4) NTg(F)p — Jo(Fr)lloo
2m+1

<l Y () °

2m
/ L(2m;ry,- - rom)d >_<1 liipnl(7n)
(tl 1"'atmak1 )1km)€P Azm "

where

L(2m;r1,--- ,72m)

= [(r1 = a)(ra = 1) -+~ (r2m — Tam—1)(b — T2m)] 2

/2 HO( ) rt,)rk]"vtjvvk He TtJ,TkJ,’UtJ,’Uk) d X ml(vn)
R2m
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We know that by (2.4), as N — oo,

m

m
(25) HQ(N)(thaTkja'vtjavkj) — HO("’tj,’l'kj,'Utj,’Ukj) a.e.

Since for every N € N,
16 (s,t,u,v)| < H(s,t,u,v) for B xnxmy xmy-ae.(s,t,u,v),
we have

m m m
(26) HO(N) ('I'tj v Tk Vtjs ’Ukj) - H G(th, Tkjs Utjs vkj) <2 H H(th yThjs Vt;s ’Ukj)-
j=1 i=1 i=1

In view of (2.5) and (2.6), the dominated convergence theorem gives
L(2m :ry,r, -+ ,72m) — 0 as N — oo.

Now, we claim that
2m
(2.7) / L2m 71,79, ,Tom)d X |fpnl(rn) — 0 as N — oo.
A2m n=
For a.e. (71, ,T2m) € A2m, by (2.6) and Fubini theorem,

(2'8) |L(2m tT1, T2, 77'2m)|

_1 e 2m
<2[(r1 —a)(rg —7r1) - (b —rom)] 2/2 I IH(rtj,rkj,'utj,vkj)d xlml('vn)
R2m n=
J=1

-1
2

<2[(r1 —a)(r2 —r1) -+ (b~ T2m)] I H (re;5 k55 )1

s

1

[
Il

Then, by Lemma 1.1 and the Holder’s inequality, the right hand side of the second
inequality in (2.8) is d 2>T<n fipn-integrable. Hence, by the dominated convergence
theorem, (2.7) is establig;elzd.

Therefore, Jq(F,(lN)) — Jg(Fn) as N — oo in the operator norm. a

00
Let f(z) = Y. amz™ be an entire function of growth (1, 7) where 7 < co and let
m=0

(2.9) Fly)=f /[ab] [ab]9(s,t,y(S),y(t))dB(S)dn(t)]

for y in Cla, b] and

(2.10) FN(y)=f /[ ) /[ , 0<N>(s,t,y(s),y(t»dﬂ(s)dﬁ(t)}
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for y in Cla, b
By Theorem 2.1 and Lemma 1.1 we have the following theorem.

Theorem 2.2. Let the hypotheses of Theorem 2.1 be satisfied. Let F and FN) are

given by (2.9) and (2.10), respectively. Then

Case I (growth (1,0)): In this case for all real ¢ > 0, Jo(F) and J,(F™) ezist
for each N € N.

Case II (order one, type 7, 0 < 7 < o0): In this case for all real q¢ such that
0 < |g] < Ao, Jo(F) and J(FN)Y exist for each N € N where

2
T [21b—-a!j| vl

2—7!

(2.11) Ao = p
™ (128 ool 2 oo ) [T(1 = 5] 6011

and I' is the gamma function.

Moreover Jy(F(N)) —s J,(F) in the operator norm.

Proof. We omit the proof of Theorem 2.2, since it is essentially like the proof of our
above result. |

Corollary 2.3. Under the hypotheses of Theorem 2.2, let

(2.12) F(y) = exp [/[ab]/[b] 9(8,t,y(S),y(t))dﬂ(S)dn(t)}

for y in Cla,b] and

(213)  FM(y) = exp [ /[ ) /[ ) 0<N>(s,t,y(s>,y(t)>dﬂ<s)dn(t)]-

fory in Cla,b).
Then Jo(F) and J,(FN)) exist for each real g # 0, lgl < Ao, where
/-2
2b~a)]
i)

, 2
(122 ol 2 o) [TC1 = 5] 6113

moreover Jo(FN)) —s J (F) in the operator norm.

Proof. Since the order of f(z) = e* is one and type of e” is one, it holds by Theorem
2.2, 0
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