HILBERT-SCHMIDT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALG \mathcal{L}

Young Soo Jo and Joo Ho Kang

ABSTRACT. Given vectors x and y in a separable Hilbert space \mathcal{H} , an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate Hilbert-Schmidt interpolation problems for vectors in a tridiagonal algebra. We show the following: Let \mathcal{L} be a subspace lattice acting on a separable complex Hilbert space \mathcal{H} and let $x = (x_i)$ and $y = (y_i)$ be vectors in \mathcal{H} . Then the following are equivalent:

- (1) There exists a Hilbert-Schmidt operator $A = (a_{ij})$ in $Alg \mathcal{L}$ such that Ax = y.
- (2) There is a bounded sequence $\{\alpha_n\}$ in \mathbb{C} such that $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$ and

$$y_1 = lpha_1 x_1 + lpha_2 x_2$$
 \vdots $y_{2k} = lpha_{4k-1} x_{2k}$ $y_{2k+1} = lpha_{4k} x_{2k} + lpha_{4k+1} x_{2k+1} + lpha_{4k+1} x_{2k+2}$ for $k \in \mathbb{N}$.

1. INTRODUCTION

Let \mathcal{H} be a Hilbert space and \mathcal{A} be a subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ of all operators acting on \mathcal{H} . Suppose that X and Y are specified, not necessarily in the algebra. Under what conditions can we expect there to be a solution of the operator equation AX = Y, where the operator A is required to lie in A? We refer to such a question as an interpolation problem. The 'n-vector interpolation problem', asks for an operator A such that $Ax_i = y_i$ for fixed finite collections $\{x_1, x_2, \ldots, x_n\}$ and $\{y_1, y_2, \ldots, y_n\}$. The n-vector interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison [6]. In case \mathcal{U} is a nest algebra, the (one-vector) interpolation problem was solved by Lance [7]: his result was extended by Hopenwasser [2] to the case that \mathcal{U} is a CSL-algebra. Munch [8] obtained conditions for interpolation in case A is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra.

Received by the editors January 1, 2004.

²⁰⁰⁰ Mathematics Subject Classification. 47L35.

Key words and phrases. Hilbert-Schmidt Interpolation, CSL-Algebra, Tridiagonal Algebra, Alg.

Hopenwasser [3] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser's paper also contains a sufficient condition for interpolation n-vectors, although necessity was not proved in that paper.

We establish some notations and conventions. A commutative subspace lattice \mathcal{L} , or CSL \mathcal{L} is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space \mathcal{H} . We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If \mathcal{L} is CSL, Alg \mathcal{L} is called a CSL-algebra. The symbol Alg \mathcal{L} is the algebra of all bounded operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . Let x and y be two vectors in a Hilbert space \mathcal{H} . Then $\langle x,y\rangle$ means the inner product of the vectors x and y. Let M be a subset of a Hilbert space \mathcal{H} . Then \overline{M} means the closure of M and \overline{M}^{\perp} the orthogonal complement of \overline{M} . Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers.

2. Results

Let \mathcal{H} be a separable complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \ldots\}$. Let x_1, x_2, \ldots, x_n be vectors in \mathcal{H} . Then $[x_1, x_2, \ldots, x_n]$ means the closed subspace generated by the vectors x_1, x_2, \ldots, x_n . Let \mathcal{L} be the subspace lattice generated by the subspaces $[e_{2k-1}], [e_{2k-1}, e_{2k}, e_{2k+1}]$ $(k = 1, 2, \ldots)$. Then the algebra Alg \mathcal{L} is called a tridiagonal algebra which was introduced by Gilfeather & Larson [1]. These algebras have been found to be useful counterexample to a number of plausible conjectures.

Let A be the algebra consisting of all bounded operators acting on \mathcal{H} of the form

with respect to the orthonormal basis $\{e_1, e_2, \ldots\}$, where all non-starred entries are zero. It is easy to see that $Alg\mathcal{L} = \mathcal{A}$.

We consider interpolation problems for the above tridiagonal algebra $Alg\mathcal{L}$.

Theorem 1. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a Hilbert space \mathcal{H} and let $x = (x_i)$ and $y = (y_i)$ be vectors in \mathcal{H} . Then the following are equivalent:

- (1) There exists a Hilbert-Schmidt operator $A = (a_{ij})$ in $Alg\mathcal{L}$ such that Ax = y.
- (2) There is a bounded sequence $\{\alpha_n\}$ in \mathbb{C} such that $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$ and

$$y_1 = \alpha_1 x_1 + \alpha_2 x_2$$

$$\vdots$$

$$y_{2k} = \alpha_{4k-1} x_{2k}$$

$$y_{2k+1} = \alpha_{4k} x_{2k} + \alpha_{4k+1} x_{2k+1} + \alpha_{4k+2} x_{2k+2} \text{ for } k \in \mathbb{N}.$$

Proof. Suppose that A is a Hilbert-Schmidt operator $A = (a_{ij})$ in Alg \mathcal{L} such that Ax = y. Let $\alpha_n = a_{ij}$ for n = i + j - 1 and $\{e_n\}$ is the standard orthonormal basis for \mathcal{H} . Since A is Hilbert-Schmidt, $\sum_i ||Ae_i||^2 < \infty$. Hence

$$\begin{split} \sum_{i} \|Ae_{i}\|^{2} &= \sum_{i} \sum_{j} |\langle Ae_{i}, e_{j} \rangle|^{2} \\ &= \sum_{k=1}^{\infty} \langle Ae_{2k-1}, e_{2k-1} \rangle + \sum_{k=1}^{\infty} \langle Ae_{2k}, (e_{2k-1} + e_{2k} + e_{2k+1}) \rangle \\ &= \sum_{k=1}^{\infty} |\alpha_{4k-3}|^{2} + \sum_{k=1}^{\infty} (|\alpha_{4k-2}|^{2} + |\alpha_{4k+1}|^{2} + |\alpha_{4k}|^{2}) \\ &= \sum_{k=1}^{\infty} |\alpha_{k}|^{2} < \infty. \end{split}$$

Since Ax = y,

$$y_1 = \alpha_1 x_1 + \alpha_2 x_2$$

 \vdots
 $y_{2k} = \alpha_{4k-1} x_{2k}$
 $y_{2k+1} = \alpha_{4k} x_{2k} + \alpha_{4k+1} x_{2k+1} + \alpha_{4k+1} x_{2k+2}.$

Conversely, assume that there is a bounded sequence $\{\alpha_n\}$ in $\mathbb C$ such that

$$\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$$

and

$$y_1 = \alpha_1 x_1 + \alpha_2 x_2$$

 \vdots
 $y_{2k} = \alpha_{4k-1} x_{2k}$
 $y_{2k+1} = \alpha_{4k} x_{2k} + \alpha_{4k+1} x_{2k+1} + \alpha_{4k+2} x_{2k+2}.$

Let A be a matrix with $a_{ij} = \alpha_n$ for i + j - 1 = n. Then A is a Hilbert-Schmidt operator. Since

$$y_1 = \alpha_1 x_1 + \alpha_2 x_2$$

$$y_{2k} = \alpha_{4k-1} x_{2k}$$

$$\vdots$$

$$y_{2k+1} = \alpha_{4k} x_{2k} + \alpha_{4k+1} x_{2k+1} + \alpha_{4k+2} x_{2k+2},$$

$$Ax=y.$$

Theorem 2. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a Hilbert space \mathcal{H} and let $x_i = (x_j^{(i)})$ and $y_i = (y_j^{(i)})$ be vectors in \mathcal{H} for i = 1, 2, ..., n. Then the following are equivalent:

- (1) There exists a Hilbert-Schmidt operator $A = (a_{ij})$ in AlgL such that $Ax_i = y_i$ for all i = 1, 2, ..., n.
- (2) There is a bounded sequence $\{\alpha_n\}$ in \mathbb{C} such that $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$ and

$$\begin{aligned} y_1^{(i)} &= \alpha_1 x_1^{(i)} + \alpha_2 x_2^{(i)} \\ &\vdots \\ y_{2k}^{(i)} &= \alpha_{4k-1} x_{2k}^{(i)} \\ y_{2k+1}^{(i)} &= \alpha_{4k} x_{2k}^{(i)} + \alpha_{4k+1} x_{2k+1}^{(i)} + \alpha_{4k+2} x_{2k+2}^{(i)} \ \textit{for } k \in \mathbb{N}, \end{aligned}$$

for all i = 1, 2, ..., n.

Proof. Suppose that A is a Hilbert-Schmidt operator $A=(a_{ij})$ in Alg \mathcal{L} such that $Ax_i=y_i$ for all $i=1,2,\ldots,n$. Let $\alpha_n=a_{ij}$ for n=i+j-1 and $\{e_n\}$ is the standard orthonormal basis for \mathcal{H} . Since A is Hilbert-Schmidt, $\sum_i \|Ae_i\|^2 < \infty$.

Hence

$$\begin{split} \sum_{i} \|Ae_{i}\|^{2} &= \sum_{i} \sum_{j} |\langle Ae_{i}, e_{j} \rangle|^{2} \\ &= \sum_{k=1}^{\infty} \langle Ae_{2k-1}, e_{2k-1} \rangle + \sum_{k=1}^{\infty} \langle Ae_{2k}, (e_{2k-1} + e_{2k} + e_{2k+1}) \rangle \\ &= \sum_{k=1}^{\infty} |\alpha_{4k-3}|^{2} + \sum_{k=1}^{\infty} (|\alpha_{4k-2}|^{2} + |\alpha_{4k+1}|^{2} + |\alpha_{4k}|^{2}) \\ &= \sum_{k=1}^{\infty} |\alpha_{k}|^{2} < \infty. \end{split}$$

So $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$. Since $Ax_i = y_i$ for all $i = 1, 2, \ldots, n$,

$$y_1^{(i)} = \alpha_1 x_1^{(i)} + \alpha_2 x_2^{(i)}$$

•

$$y_{2k}^{(i)} = \alpha_{4k-1} x_{2k}^{(i)}$$
 $y_{2k+1}^{(i)} = \alpha_{4k} x_{2k}^{(i)} + \alpha_{4k+1} x_{2k+1}^{(i)} + \alpha_{4k+2} x_{2k+2}^{(i)}$ for $k \in \mathbb{N}$,

for all i = 1, 2, ..., n.

Conversely, assume that there is a bounded sequence $\{\alpha_n\}$ in $\mathbb C$ such that

$$\sum_{k=1}^{\infty} |\alpha_k|^2 < \infty$$

and

$$\begin{aligned} y_1^{(i)} &= \alpha_1 x_1^{(i)} + \alpha_2 x_2^{(i)} \\ &\vdots \\ y_{2k}^{(i)} &= \alpha_{4k-1} x_{2k}^{(i)} \\ y_{2k+1}^{(i)} &= \alpha_{4k} x_{2k}^{(i)} + \alpha_{4k+1} x_{2k+1}^{(i)} + \alpha_{4k+2} x_{2k+2}^{(i)} \text{ for } k \in \mathbb{N}, \end{aligned}$$

for all i = 1, 2, ..., n. Let A be a matrix with $a_{ij} = \alpha_n$ for i + j - 1 = n. Then A is a Hilbert-Schmidt operator. Since

$$y_1^{(i)} = \alpha_1 x_1^{(i)} + \alpha_2 x_2^{(i)}$$
 \vdots
 $y_{2k}^{(i)} = \alpha_{4k-1} x_{2k}^{(i)}$
 $y_{2k+1}^{(i)} = \alpha_{4k} x_{2k}^{(i)} + \alpha_{4k+1} x_{2k+1}^{(i)} + \alpha_{4k+2} x_{2k+2}^{(i)} \text{ for } k \in \mathbb{N},$

for all
$$i = 1, 2, ..., n, Ax_i = y_i$$
.

By the similar way with the above, we have the following.

Theorem 3. Let $Alg\mathcal{L}$ be the tridiagonal algebra on a Hilbert space \mathcal{H} and let $x_i = (x_j^{(i)})$ and $y_i = (y_j^{(i)})$ be vectors in \mathcal{H} for $i = 1, 2, \ldots$ Then the following are equivalent:

- (1) There exists a Hilbert-Schmidt operator $A = (a_{ij})$ in $Alg\mathcal{L}$ such that $Ax_i = y_i$ for all i = 1, 2, ...
- (2) There is a bounded sequence $\{\alpha_n\}$ in \mathbb{C} such that $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$ and

$$y_1^{(i)} = \alpha_1 x_1^{(i)} + \alpha_2 x_2^{(i)}$$

$$\vdots$$

$$y_{2k}^{(i)} = \alpha_{4k-1} x_{2k}^{(i)}$$

$$y_{2k+1}^{(i)} = \alpha_{4k} x_{2k}^{(i)} + \alpha_{4k+1} x_{2k+1}^{(i)} + \alpha_{4k+2} x_{2k+2}^{(i)} \text{ for } k \in \mathbb{N},$$

for all $i = 1, 2, \ldots$

REFERENCES

- F. Gilfeatherand & D. Larson: Commutants modulo the compact operators of certain CSL algebras. In: Constantin Apostol, Ronald G. Douglas, Béla Szökefalvi-Nagy, Dan Voiculescu & Grigore Arsene (Eds.), Topics in modern operator theory (pp. 105–120). Birkhäuser, Basel-Boston, Mass., 1981. MR 84b:47052
- 2. A. Hopenwasser: The equation Tx = y in a reflexive operator algebra. Indiana Univ. Math. J. 29 (1980), no. 1, 121–126. MR 81c:47014
- 3. _____: Hilbert-Schmidt interpolation in CSL-algebras. Illinois J. Math. 33 (1989), no. 4, 657-672. MR 90m:47057
- 4. Y. S. Jo & J. H. Kang: The equation AX = Y in $Alg \mathcal{L}$. To appear.
- 5. E. Katsoulis, R. L. Moore & T. T. Trent: Interpolation in nest algebras and applications to operator corona theorems. *J. Operator Theory* **29** (1993), no. 1, 115–123. MR **95b**:47052
- 6. R. Kadison: Irreducible operator algebras. *Proc. Nat. Acad. Sci. U.S.A.* **43** (1957), 273–276. MR **19,**47e
- 7. E. C. Lance: Some properties of nest algebras. *Proc. London Math. Soc.* (3) **19** (1969), 45–68. MR **39**#3325
- 8. N. Munch: Compact causal data interpolation. J. Math. Anal. Appl. 140 (1989), no. 2, 407–418. MR 90c:47029

(Y. S. Jo) Department of Mathematics, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701, Korea

Email address: ysjo@kmu.ac.kr

(J. H. KANG) DEPARTMENT OF MATHEMATICS, DAEGU UNIVERSITY, 15 NAERI-RI, JILLYANG-EUB, GYEONGSAN-SI, GYEONGBUK 712-714, KOREA

Email address: jhkang@taegu.ac.kr