ON SOME PROPERTIES OF BOUNDED X^* – VALUED FUNCTIONS

Bok Dong Yoo

1. Introduction

Suppose that X is a Banach space with continuous dual X^{**} , (Ω, Σ, μ) is a finite measure space. $f: \Omega \to X^*$ is a weakly measurable function such that $x^{**}f \in L_1(\mu)$ for each $x^{**} \in X^{**}$ and $T_f: X^{**} \to L_1(\mu)$ is the operator defined by $T_f(x^{**}) = x^{**}f$.

In this paper we study the properties of bounded X^* - valued weakly measurable functions and bounded X^* - valued $weak^*$ measurable functions.

Throughout the paper X will denote the unit ball of X by B_X . An operator $T_f: X^{**} \to L_1(\mu)$ is said to be (w^*, norm) - continuous provided that net $T_f(x_j **)$ converges to $T_f(x^{**})$ in the norm topology of $L_1(\mu)$ whenever (x_{α}^{**}) is a net which converges to x^{**} in the $weak^*$ topology of X^{**} .

A function : $(\Omega, \Sigma, \mu) \to X^*$ is weakly measurable if $x^{**}f$ is measurable for every $x^{**} \in X^{**}$. A function : $(\Omega, \Sigma, \mu) \to X^*$ is $weak^*$ measurable if x f is measurable for every $x \in X$.

An operator $T_f: X^{**} \to L_1(\mu)$ which is defined by $T_f(x^{**}) = x^{**}f$ is weakly compact if the norm closure of $T_f(B_X^{**})$ is weakly compact. A subset K of $L_1(\mu)$ is called uniformly integrable if $\lim_{\mu(E)\to 0} \int_E |f| d\mu = 0$ uniformly in $f \in K$.

2. Main Theorems

Theorem 1. If $f: \Omega \to X^*$ is bounded weakly measurable function, then f is (w^* , norm) - sequentially continuous.

Typeset by AMS-TFX

Proof. If x_n^{**} converges to x^{**} in the weak* topology of X^{**} , then $x_n^{**}f$ converges to $x^{**}f$ pointwise. Since x_n^{**} converges to x^{*} in the weak* topology of X^{**} , by the principle of uniform boundedness $Sup_{n\to\infty} \parallel x_n^{**} \parallel < \infty$ and by hypothesis there exists M>0 such that $Sup_{x\in\Omega} \parallel f \parallel < M$.

Since $|x_i^{**}| \leq \sup ||x_{n'}^{**}|| \leq M$, by Lebesque's bounded convergence theorem

$$\lim_{n \to \infty} \|x_n^{**} f - x^{**} f\| = \lim_{n \to \infty} \int_{\Omega} |x_n^{**} f - x^{**} f| d\mu = 0$$

Thus T_f is $(w^*, norm)$ - sequentially continuous.

Lemma. A subset of $L_1(\mu)$ is relatively weakly compact if and only if it is bounded and uniformly integrable.

Proof. Let $K \subset L_1(\mu)$ be relatively weakly compact. Then K is bounded and if (f_n) is a sequence in K, then (f_n) has a weakly convergent subsequence.

Hence there is a subsequence (f_{nj}) such that $\lim_{i} \int_{E} f_{nj} d\mu$ exists for all $E \in \Sigma$.

It follows immediately that K is uniformly integrable.

Conversely, suppose K is bounded and uniformly integrable. Let (f_n) be a sequence in K. Then there is a countable field \mathcal{F} such that f_n is measurable relative to the σ - field Σ_1 , generated by \mathcal{F} .

By diagonal procedure, select a subsequence (f_{nj}) such that $\lim_{j} \int_{E} f_{nj} d\mu = F(E)$ exists for all $E \in \mathcal{F}$.

Since K is uniformly integrable, there exists $f \in L_1(\Sigma_1, \mu)$ such that

$$\lim_{j} \int_{\Omega} f_{nj} \ g \ d\mu = \int_{\Omega} f \ g \ d\mu$$

for each $g \in L_{\infty}(\Sigma_1, \mu)$. Hence $f_{nj} \to f$ is weakly in $L_1(\Sigma_1, \mu)$, But $f_{nj} \to f$ is weakly $L_1(\mu)$, Hence K is relatively compact.

Theorem 2. If $f: \Omega \to X^*$ is bounded weakly measure function, then $T_f: X^{**} \to L_1(\mu)$ is locally compact operator.

Proof. Since $f: \Omega \to X^*$ is bounded there exists a number M such that $\sup\{\|f(x)\|; x \in \Omega\} \le M$. If x^{**} belongs to B_X^{**} ,

$$||T_f(x^{**})|| = \int_{\Omega} |x^{**}f| d\mu = \int_{\Omega} ||f(x)|| d\mu = M\mu(\Omega).$$

Hence $T_f(B_X^{**})$ is norm bounded. If $\varepsilon > 0$, $\mu(B) < \frac{\varepsilon}{M}$ then

$$\int_{E} \| f \| d\mu \leq M\mu(E) < \varepsilon \text{ and if } \mu(E) < \frac{\varepsilon}{M} \text{ and } x^{**} \in B_X **,$$

$$\int_{E} |T_{f}(x^{**})| d\mu = \int_{E} |x^{**}f| d\mu \le \int_{E} ||f|| d\mu < \varepsilon$$

Hence $T_f(B_X^{**})$ is uniformly integrable. By Dunford theorem, $T_f(B_X^{**})$ is relatively weakly compact. Therefore $T_f: X^{**} \to L(\mu)$ is weakly compact operator.

Theorem 3. Suppose that (Ω, Σ, μ) is a measure space, $f_n : \Omega \to X^*$ is bounded weak*-measurable for each $n \in \mathbb{N}$, $\{f_n : n \in \mathbb{N}\}$ is uniformly bounded and there is a real valued function gx on Ω such that $xf_n \to gx$ a.e. $[\mu]$. Then there is an $f : \Omega \to X^*$ such that xf = gx a.e. $[\mu]$ for each $x \in X$.

Proof. Suppose the hypothesis are satisfied. Let M_n be a $\sup\{\|f_n(x^*)\|: x^* \in X^*\}$, since $\{f_n : n \in N\}$ is uniformly bounded, $M = \sup M_{n < \infty}$.

Let $K_M(0)$ denote the closed ball of radius M with center at the origin of X^* , then $K_M(0)$ is weak* compact and $(K_M(0), w^*)^{\Omega}$ is compact in pointwise topology. Since (f_n) is a net in the compact space $(K_M(0), w^*)^{\Omega}$, there are a subnet (f_{n_k})

of (f_n) and a function $f: \Omega \to K_M(0)$ such that (f_{n_k}) converges to f pointwise in the w^* - topology. But then $xf = q_X$ a.e. $[\mu]$ for each $x \in X$

REFERENCES

- 1. Elizabeth M. Bator, Pettis integrability and the equality of the norms of the weak* integral and the Dunford integral, Proc. Amer. Math. Soc., 95 (1985), 256 270.
- 2. Elizabeth M. Bator, P. L. Lewis and D. Race, Some connections between Pettis integration and operator theory, Rocky mountain J. Math. 17 (1987).
- 3. John B. Conway, A course in functional analysis, New York, Springer-Verlag, (1985).
- 4. J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Serveys 15 Amer. Math. Soc., Providence, R. I., 1977.
- 5. N. Dunford and J. T. schwartz, Linear Operator:part 1., New York, Interscience, (1958).
- 6. R. Huff, Remarks on Pettis integrability, Proc. Amer. Math. soc., 96 (1986), 402 404.

National Tax College Suwon,440-747,Korea