J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 13, Number 4 (November 2006), Pages 269-280

DIRECT PRODUCTS OF L;-GROUPS

JON CORSON* AND DOHYOUNG RYANG™

ABSTRACT. Recently Ls-groups were introduced in the study of geometric group
theory. Three levels of Ls-groups are difined and discussed. It is shown that each
of these levels of Ls-groups is closed under taking a direct product.

1. INTRODUCTION

Recently Ls-metric spaces and Ls-groups were introduced in the study of geo-
metric group theory as a generalization of hyberbolic metric spaces and hyperbolic
groups, respectively. Hyperbolic groups have been a central topic and have provided
motivation for much of geometric group theory since Gromov’s seminal paper [6].
The class of hyperbolic groups includes finite groups, free groups, surface groups,
hyperbolic small cancellation groups, etc., and is closed under free products, free
factors, and direct factors. But a direct product of hyperbolic groups may not be
hyperbolic. For example, Z x Z is not hyperbolic whereas Z is hyperbolic.

Elder studied a strong form of Ls-groups, namely finitely generated groups that
have a Cayley graph with the Ls-property. He showed that such groups are finitely
presented and have a sub-cubic Dehn function [5]. Chatterji defined Ls-groups in a
perhaps more general sense than in Elder’s work in her dissertation (2]. Nevertheless,
we showed that Elder’s result is also true for Chatterji’s Ls-groups [4]. In addition
to these two notions of Ls-groups we introduce what might be an intermediate level
of Ls-groups using a weighted Cayley graph. The current paper is a discussion of
these different levels of Ls-groups which we call V.S Ls-groups, SLs-groups, and Ls-
groups; see Section 2 for the precise definitions. The following chain of inclusions is
an easy consequence of their definitions (see Section 3):

Hyperbolic groups = V SLs-groups = SL;-groups — Ls-groups.
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It is unknown whether or not any of these three levels of Ls-groups are actually
the same. Consequently, it is of interest to investigate differences and similarities
among the three levels of Ls-groups. As noted above, as a similarity, all three levels
of Ls-groups are finitely presented and have a sub-cubic Dehn function. This paper
is an investigation of another similarity among the three classes. It was remarked
in (3] that Ls-groups are closed under taking a direct product. We show that indeed
all three different levels of Ls-groups are closed under taking a direct product.

All groups throughout the paper, unless stated otherwise, are assumed to be
finitely generated. And all generating sets are assumed to be symmetric, meaning
that they contain the inverse of each of their members.

2. BACKGROUND AND DEFINITIONS

Let G be a group and (X, d) be a metric space. A (left) action of G on X is is said
to be cocompact if there exists a compact subset K C X such that X = GK, i.e., the
orbit space X/G is compact. We say that G is acting by isometries on X if for any
z,y € X and g € G, d(z,y) =d(g-z,9-y). An action is said to be proper if for each
z € X there exists a number 7 > 0 such that the set {g € G | gB(z,r)NB(z,r) # 0}
is finite. Or alternatively, G acts properly on X if for every compact subset K C X
there are only finitely many g € G such that gK N K # (. We will be interested in
groups that are simultaneously acting properly, compactly, and by isometries on a
metric space. These special actions are often called geometric actions.

Suppose that P is a property of metric spaces. We call a finitely generated group
G a (geometric) P-group if G acts geometrically on a geodesic space with property
P. For example, a hyperbolic group can be defined in this way. First let us recall
the definition of a hyperbolic space. '

Definition 2.1 (Gromov’s hyperbolicity). Let X be a geodesic metric space and
4 > 0 be a constant. A geodesic triangle in X is said to be &-thin if each of its sides
is contained in the 5-neighborhood of the other two sides. X is called é-hyperbolic
if every geodesic triangle in X is §-thin. |

There are some equivalent ways to formulate hyperbolicity. One way is as follows:
Consider a geodesic triangle A with vertices z, y, and zina geodesic space X. Then
there exists a map o which maps A to the tripod T with four points z/, 3/, 2z’ and
t' in E?, where a(z) = 2/, a(y) = ¢, a(z) = 2’ and ' is the common point of three



DIRECT PRODUCTS OF L;-GROUPS 271

edges. The map « is an isometry on each side. Then X is hyperbolic if and only if
there is a constant k such that for each geodesic triangle A in X, the diameter of
a~1(p) is less than k for all p € T [6).

It is an important fact that hyperbolicity of geodesic metric spaces is a quasi-
isometry invariant. Recall that quasi-isometry is a relation that equates spaces which
look the same on the large scale:

Definition 2.2 (quasi-isometry). Let A > 1 and € > 0 be constants. A map
[:(X,d) — (X',d') is a (A, €)-quasi-isometric embedding if

Sd@y) — e < (@), 1) < Mz,g) + e

for all z,y € X. In addition, f is called a (), &)-quasi-isometry if there exists a
constant k > 0 such that every point in X’ lies in the k-neighborhood of the image
of f. We say that (X,d) and (X', d’) are quasi-isometric when such a map exists.

A finitely generated group G is a hyperbolic group if it acts properly, cocom-
pactly, and by isometries on a hyperbolic space. Furthermore, it follows from the
Svarc-Minor Theorem (see [1, 8]) that any two geodesic spaces on which G acts ge-
ometrically are quasi-isometric. Thus if a finitely generated group G is hyperbolic,
then every geodesic metric space that G acts geometrically on is a hyperbolic space.
The Cayley graph is a good example of geodesic space on which G acts geometrically.
Hence the following definition is equivalent to the one given above.

Definition 2.3 (Hyperbolic group). A finitely generated group is hyperbolic if it
has a Cayley graph that is a hyperbolic space.

Recall the Ls-property of a geodesic space. Let (X,d) be a geodesic space. A
finite sequence of points (z1,...,z,) in X is called a J-path if there exists a non-
negative constant § such that

d(zy,x2) + d(z2,23) + ... + d(Tp-1,2n) < d(z1,2n) + 6.

Let z,y,2z in X. A point t € X is called a §-center for the triple z,y, z if (z,t,y),
(y,t,2), and (2,t,z) are all 6-paths. Note that if a triple of points has a j-center,
then it has a &-center for every 8’ > §. So we may assume that é is an integer. We
say that a geodesic space (X, d) has the Ls-property and call it an Ls-space if any
triple z,y, z in X has a 6-center. Of course the Ls-property makes sense for metric
spaces in general, but here we are only interested in geodesic spaces.
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FIGURE 1. o~ ! from T in E? to a hyperbolic space X.

Definition 2.4 (Ls-group). A finitely generated group G is said to be an L;-group
if it acts properly, cocompactly, and by isometries on an Ls-space for some § > 0.

Easy examples show that the Ls-property is not a quasi-isometry invariant. So
we cannot define Ls-groups in terms of their Cayley graphs as we did for hyperbolic
groups. However, we use the Cayley graph and weighted Cayley graph to consider
some stronger cases of Ls-groups. A weighted Cayley graph is a Cayley graph with
weights attached to its edges. These are discussed in the next section. An ordinary
(unweighted) Cayley graph is a special case in which each edge has unit weight.

Definition 2.5 (V SLs-group, SLs-group). A group G is called a strong Ls-group,
and denoted by SLg-group, if a weighted Cayley graph of G has the Ls-property.
G is called a very strong Ls-group, and denoted by V SLs-group, if an (unweighted)
Cayley graph of G has the Ls-property.

We now show that hyperbolic groups are Ls-groups by proving that hyperbolic
spaces are Ls-spaces. It then follows by an observation made in the next section

that hyperbolic groups are also SLs-groups and V SLs-groups.
Proposition 2.6. A hyperbolic space is an Ls-space.

Proof. Let X be a k-hyperbolic space and z,y,z be in X. Let A be a geodesic
triangle with vertices x,y, z. Then there is a map a from A to a tripod T" with four
points z’,y’, 2 and ¢ € E2, where a(z) = 7', a(y) = ¥/, a(z) = 2’ and ¢’ is the unique
triple point with a point from each side of A in its preimage. Let a” Y (t) = ty,t2,t3
where ¢; is the point on [z,y], ¢ is the point on [y, 2], and ¢3 is the point on [z, x].
See Figure 1.
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Then d(z,t1) = d(z,t3), d(y,t1) = d(y,t2), and d(z,t2) = d(z,t3). Since A is
k-thin, it is easy to see that ¢; is within a distance 2k of ty or t3, and likewise for ¢
and t3. Thus one of the points t1, t2, or t3 is within a distance 2k of the other two
points. We check that this point, assume that it is t;, is a 2k-center for the triple
z,Y, 2.

Since t € [z,y], d(z,t) + d(t,y) = d(z,y). On the other hand, by the triangle
inequality,

d(y,t1) + d(ty, z) < d(y,t2) + d(t1,t2) + d(t2, 2)
< d(y7 t2) + 2k + d(t2a Z)
= d(y, z) + 2k,

and similarly d(z,1)+d(¢t1,z) < d(z,x)+2k. Sot is a 2k-center for the triple z,y, 2,
and hence X has the Lg-property for § = 2k. O

3. WEIGHTED CAYLEY GRAPH

In this section we review weighted Cayley graphs and some of their basic proper-
ties. Let G be a finitely generated group and let 4 be a weighted finite generating
set. That is, A is a finite symmetric (A1 = A) generating set for G with a weight
function wa : A — Z* satisfying wa(a™!) = wa(a) for all @ € A. Let A* denote
the set of all words on the set A, and denote the natural epimorphism A* — G by

w > w. For a word w = aqag - - -a, in A*, the weight of w is
wa(w) =walaras - ap) =walar) +walaz) + - +walan).
Define a distance function d4 : G x G — R by
da(x,y) = min {wa(w) |w € A* and W = iy},

for all z,y in G. It is easy to check that d4 is a metric for G. Construct the
weighted Cayley graph I'(G, A) as follows. The vertex set of I'(G, A) is G and the
set of directed edges is G x A. For each g € G and a € A, the directed edge (g, a)
joins the vertex g to the vertex ga and is given the label a. The inverse of the edge
(g,a) is (ga,a™!). We extend d4 to a metric for I'(G, A) by making each edge with
label a € A isometric to the interval [0,wa(a)] C R and taking d4 to be the path
metric. Note that we get an (unweighted) Cayley graph by putting the weight 1 on
each a € A.



274 Jon CORSON® AND DOHYOUNG RYANG**

‘Remark. Letw: 4 — Q™ be a rational weight function. For all a; € A, the weight
w(a;) = -Z—:_', where p;, ¢; € Z. Since A is finite, there exists a least common multiple
m of all ¢;. Then there exist m; € Z such that m%’_:} = m;p; € Z. We reassign the
weight w(a;) = m;p; for all a; € A. So, by scaling we obtain integer weights, and
hence nothing is gained by allowing rational, non-integer weights.

Lemma 3.1. Let G be a finitely generated group and A be o finite weighted gen-
erating set for G. Then (I'(G, A),d4) is a geodesic metric space on which G acts
properly, cocompactly, and by isometries.

Proof. We first need to show that (I'(G,A),da) is a geodesic space. Since A
generates G, I'(G, A) is path connected. Choose z,y € G and let {w;} be the set of
all words in A* such that @W; = z™y. Since all w(w;) are positive integers, there
exists a word w € {w;} such that da(z,y) = inf; wa(w;) = wa(w). Thus, the path
in I'(G, A) from z to y with label w is a geodesic path from z to y.

Choose z,y € T(G,A) \ G. Let e; and e, be the edges containing = and y,
respectively. Then there are endpoints z’ of e, and y' of e, such that da(z,y) =
da(z,z') + da(z’,y') + da(y',y). Thus there exist geodesics from z to z/, z’ to ¥/,
and 3’ to y, that together form a geodesic from z to y. Hence (I'(G,A),da) is a
geodesic space.

We next check that G acts properly, cocompactly, by isometries on I'(G, A). Since
the orbit space I'(G, A)/G is a finite graph with one vertex and with |A| edges, G
acts cocompactly on (I'(G, A),d4). For any z,y € I'(G, A), let v be a geodesic from
z to y. Then gv is a path in I'(G, A) between gz and gy with the same weight as
for all g € G. Thus

da(gz,9y) <walgy) = wa(y) = da(z,y).

Then we also have that

da(z,y) = da(g™ 92,97 gy) < dalgz, gy).

So, da(gz,9y) = da(z,y) and hence G acts on (I'(G, A),da) by isometries. Since G
acts freely on I'(G, A), it follows easily that the action is proper. O

Now suppose that G is a hyperbolic group. By Lemma 3.1 , G acts geometrically
on its (unweighted) Cayley graph I'(G, A) and thus I'(G, A) is a hyperbolic space.
So by Proposition 2.6, I'(G, A) is an Ls-space and hence G is a V' SLs-group. Fur-
thermore, it is obvious that a V SLs-group is a SLs-group, and by Lemma 3.1 we
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see that a SLs-group is an Ls-group. That is,
Hyperbolic groups € VSLs-groups C SLs-groups C Ls-groups.

It also follows from Lemma 3.1 and the Svarc-Minor Theorem (Proposition 8.19
[1]) that weighted Cayley graphs of G for different weighted finite generating sets
are quasi-isometric. This also follows from our next observation.

Proposition 3.2. Let G be a finitely generated group and let A and B be weighted
finite generating sets for G. Then the inclusion map ¢ : (G,d4) — (T'(G, B),dB) is

a quasi-isometry.

Proof. Let o = max{wp(a)|a € A} and 8 = max {wy4(b) | b € B}, and let X =
max {@, 3}. Choose z,y € G. Then there exist ai,...,a, € A such that z~ly =
a1---an and da(x,y) =walai - -ap). Thus,

dp(z,y) <wpla1) +--- +walan) < a-n < X-da(z,y).
Similarly, da(z,y) < 8- dg(z,y) < A-dp(z,y). So

1
XdA(x’y) S dB(fE,y) S AdA(:L',y)v

and hence ¢ : (G,d4) — (I'(G, B),dg) is a quasi-isometric embedding.

Note that every point in I'(G, B) is no more than one edge from a vertex, and
each edge is weighted by at most k¥ = max {wp(b) | b € B}. Therefore every point
in I'(G, B) is in the k-neighborhood of the image of ¢, and thus the inclusion map ¢
is a quasi-isometry. |

4. MAIN RESULTS

In this section we investigate direct products of the three levels of Ls-groups. We
begin with the case of SL;-groups.

Theorem 4.1. Let G be a finitely generated group and G =M x N. If M and N
are SLg-groups, then G is a SLs-group.

Proof. Let G be a finitely generated group and M, N be normal subgroups of G
so that G = MN, MNN =1, M and N are SLs-groups. There exists a weighted
finite generating sets A and B for M and N, respectively, such that (I'(M, A),d4)
has the L4, -property and (I'(N, B),dg) have the Ls,-property for some 8; > 0. Let
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E = AU B. Then E is a weighted finite generating set for G, where the weight
function wg : E — Z* is determined by w4 : A - Zt and wp: B — Z%.

It suffices to show that (I'(G, E),dg) has the Ls-property for some 6 > 0. We
make use of the following observation about the metrics dg, d4, and dg. Let ¢
and g be in G. Then there exist unique my,ms € M and ni,ny € N such that
g1 = miny and g3 = maong. We claim that dE(gl,gz) = dA(ml,mz) +d3(n1,n2).

First note that

de(91,92) = dp(miny, manz)
< dp(mini, mani) + dg(many, mans)
< dg(nimy, nimg) + dg(many, maony)
< dg(my,mz) + dp(ni,n2)
< da(my, mg) + dp(ny,ng).

On the other hand, choose © € A* and v € B* such that ml‘lmg =, nl‘lng =

U, da(my,m2) = wa(u), and dp(ni,n2) = wp(v). Then wv € E* and gl_lgz =

1o = 7. So

nl_lml_lmgng = ml_lmznl“
dg(91,92) < we(w) = wa(u) +wp(v) = da(m1, mz) + dp(n, n2),
and hence the claim follows.

We now check the Ls-property of (I'(G, E),dg). Let g1,92,93 € G, i.e., vertices
of I'(G, E). Then there exist unique my, ms, and mg in M and ny, ny, and ng in
N such that g1 = myn;, go = mang, and g3 = mgns. Since I'(M, A) has the Ly, -
property, there exist a é;-center t € I'(M, A) for the triple mq,mo,m3. Let m e M
be a nearest vertex to t. Note that d4(t,m) < k/2, where k = max {wg(e) | e € E}.
Thus for 7 # j,

da(mi,m) + da(m,mj) < da(my,t) +da(t,m) 4+ da(m,t) +da(t,m;)
< dA(mi,mj) + 61+ k.
Likewise, there exists an n € N such that for 7 # j,

dB(ni,n) + dB(n, nj) < dB(TLi,nj) + 89 + k.
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Let g = mn € G. Then g is a vertex of I'(G, E) satisfying: for 7 # j,
de(9i,9) +dE(g,9;) = da(mi, m) + dp(ni, n) + da(m, m;) + dp(n,n;)
< da(ms,mj) + 61 + k+dp(ni,n) + 62+ k
= dg(gi,g;) + 61 + 62 + 2k.
Hence the vertex g is a (81 + 02 + 2k)-center in I'(G, E) for the triple of vertices

91,92, 93-

Now let 1, T2, and z3 be any three points in I'(G, E). Pick three vertices g1, g2
and g3 in G which are closest to the points x1, z2, and z3, respectively. Note that
dp(zi,9:) < k/2, where as before k = max {wg(e) | e € E}. As we saw above, there
exists g € G which is a (6; + 62 + 2k)-center for g1, 92,93 in I'(G, E). Thus, by the
triangle inequality and the above inequalities, we obtain the following inequalities:
for ¢ # 7,

dg(zi,9) + delg, z;) < de(zi, gi) + de(9:, 9) + delg, g5) + de(gj, ;)
k
2

IN

k
+ dE(gi,gj) + 61+ 060 +2k + 3
dg(gi, ;) + de(xz;, z;) + de(zj, g5) + 01 + 02 + 3k
< dE(xi,:L‘j) + 61 + 82 + 4k.

IA

It follows that g is a (6 +0d2+4k)-center for the triple z1,z2,z3. Hence (I'(G, E),dEg)
has the Lg-property for 6 = §, + d2 + 4k, and therefore G is an SLs-group. O

By the same argument as in the proof of Theorem 4.1 we obtain the result for
V S Ls-groups:

Corollary 4.2. Let G be a finitely generated group and G = M x N. If M and N
are VSLgs-groups, then G is a VSLg-group.

Proof. Since, by assumption, M and N are V.SLs-groups, there exists finite gen-
erating sets A for M and B for N (with unit weights) such that (I'(M, A),da)
has the Ls,-property and (I'(N, B),dp) has the Ls,-property for some 6; > 0. Let
E = AU B. Then FE is a finite generating set for G, where wg is the unit weight
function, i.e., wg(e) = 1 for all e € E. Furthermore, by the argument in the proof of
Theorem 4.1, (T'(G, E),dg) has the Ls-property for § = §; + 62 + 4 (as here k = 1).
Hence G is a V.SLs-group. a
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Turning to the general case, we make the following convention. Let (X,dx) and
(Y,dy) be metric spaces. Then, unless stated otherwise, we give the product space
X x Y the metric d, where for any two points (z1,%1) and (22,y2) in X x Y,

d((z1,71), (z2,92)) = dx (21, 22) + dy (y1, ¥2)-

Lemma 4.3. Let (X,dx) and (Y,dy) be Ls-spaces and let d be the metric on X xY
defined above. Then (X x Y,d) is an Lg-space for 8' = 26.

Proof. We may assume that (X,dx) and (Y,dy) are Ls-spaces for the same § > 0.
Choose three points (z;,y;) € X X Y,i = 1,2,3. Since X is an Ls-space, there exists
a d-center s € X for the triple z1,z2,23 in X and there exists a S-center t € Y for
the triple y1, yo, y3 in Y. We see that ((z1,v1), (s, 1), (x2,32)) is &'-path for §' = 26,

since
d((z1,y1), (3’ t)) + d((sat)a (332, y?))
= dx(z1,8) + dy(y1,t) + dx (s, z2) + dy (¢, y2)
<dx(z1,22) + 6 +dy(y1,y2) + 6
= d((z1,11), (%2, ¥2)) + 2.

Slm]la'rly ((372, y2)’ (S, t)a (173, y3)) and ((173, y3)a (S, t)a ("El, yl)) are 5l'pa'thsa SO(S, t)
€ X x Y is a §-center for the triple (z1,y1), (%2,¥2), (23,y3) in X x Y. Hence
(X x Y,d) has the Lg-property for 8’ = 24. ]

Lemma 4.4. Let G and H be finitely generated groups acting properly, cocompactly,
and by isometries on a metric space (X,dx) and (Y,dy), respectively. Then G x H
acts properly, cocompactly, and by isometries on the metric space (X x Y,d).

Proof. Define the group action of G x H on the product space X x Y by

(g,h) - (z,y) = (9-=,h-y)
for all g € G,h € H and for all z € X,y € Y. We claim that this action is propér,
cocompact, and by isometries.

Let K be a compact subset of X x Y, and let Kx be the projection of K on X v
and Ky be the projection of K on Y. Then K C Kx x Ky. Note that Kx and Ky '
are compact since a continuous map preserves compactness. We observe that

{(g,h) e Gx H | (g,n)K N K # 0}
Cc{(g,h) e Gx H | (9,h)(Kx x Ky) N (Kx x Ky) # 0}
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={(g,h) € G x H| (gKx x hKy) N (Kx x Ky) # 0}
={(g,h) e Gx H | (9gKx NKx) # 0 and (hKy N Ky) # 0}
={g€eCG|gKxNKx #0} x{he H|hKynKy #0}.
We know that {g € G| gKx N Kx # 0} is finite since Kx is a compact subset of
X and G acts properly on X. Similarly, {h € H | hKy N Ky # 0} is finite. So,
{(g,h) € G x H | (9,h)K N K # (0} is finite and hence G x H acts properly on X xY.
Let Kx be a compact subset of X such that GKx = X and let Ky be a compact
subset of Y such that HKy =Y. Let K = Kx x Ky. Then
(Gx H)(Kx x Ky)={(¢,h) - (z,y) | g€ G, h € H,z € Kx,y € Ky}
= {(9z,hy) | gz € GKx,hy € HKy}
=GKx x HKy
=XxY.
And note that Kx x Ky is a compact subset of X X Y since the d-metric topology
and the usual product topology for X x Y are the same. So, G x H acts cocompactly
on X xXY.
It is easy to check that G x H acts on X x Y by isometries:
d((g, h) - (x1,91), (9, 1) - (%2, 92)) = d((gz1, hy1), (92, hy2))
= dx (921, gx2) + dy (hy1, hy2)
= dx(z1,%2) + dy (y1,92)
= d((z1, 1), (z2,¥2)),
forallge G,he H,z; ¢ X,andy; €Y. O

The previous two lemmas are combined to prove the following main theorem.
Theorem 4.5. If G and H are Lg-groups, then G X H is an Ls-group.

Proof. Let X be an Lgs-space on which G acts properly, cocompactly, and by
isometries and let Y be an Ls-space on which H acts properly, cocompactly, and
by isometries. Then, by Lemma 4.4, G x H acts properly, cocompactly, and by
isometries on X x Y. By Lemma 4.3, X x Y is an Ls-space for 6’ = 26. So the
result follows. O
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