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RESULTS ON AN INTUITIONISTIC FUZZY
TOPOLOGICAL SPACE

WoN KEuN MIN*, KYUNG-HO MIN* AND CHUN-KEE PARK*™*

ABSTRACT. In this paper, we introduce the concepts of r-gp-open map, weakly
r-gp-open map, intuitionistic fuzzy r-compactness, nearly intuitionistic fuzzy r-
compactness and almost intuitionistic fuzzy r-compactness defined by intuitionistic
gradations of openness, and obtain some characterizations.

1. INTRODUCTION

In [8], Hazra, Samanta and Chattopadyay introduced the concept of fuzzy topol-
ogy redefined by a gradation of openness and investigated some fundamental prop-
crties, which is an extended concept of fuzzy topological spaces (2] in Chang’s sense.
Atanassov [1] introduced the concept of intuitionistic fuzzy set which is a generaliza-
tion of fuzzy set in Zadeh’s sense [12]. Coker [4] introduced Chang’s type intuition-
istic fuzzy topological spaces, which it is an extended concept of fuzzy topological
spaces redefined by a gradation of openness. In [10], Mondal and Samanta intro-
duced and investigated the concept of intuitionistic gradation of openness which is
a generalization of the concept of gradation of openness defined by Chattopadyay
et. al. In [9], we introduced the concepts of r-closure and r-interior defined by in-
tuitionistic gradation of openness, which are the extended concepts of fuzzy closure
‘and fuzzy interior of a fuzzy set [5,6, 7).

In this paper, we introduce the concepts of r-gp-open map, weakly r-gp-open
map, intuitionistic fuzzy r-compactness, nearly intuitionistic fuzzy r-compactness

and almost intuitionistic fuzzy r-compactness defined by intuitionistic gradations
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of openness, and obtain some characterizations in terms of r-closure and r-interior

operators defined by intuitionistic gradation of openness

2. PRELIMINARIES

Let X be a set and I = [0, 1] be the unit interval of the real line. IX will denote
the set of all fuzzy sets of X. Ox and 1x will denote the characteristic functions of
¢ and X, respectively.

Definition 1 ([3,11]). Let X be a non-empty set and 7 : IX — I be a mapping
satisfying the following conditions:

(1) 7(0x) =7(1x) =1;

(2) VA,B€ IX, T(ANB) > 7(A) A7(B);

(3) For every subfamily {A4; : i € J} C IX, 7(Uses Ai) > Ney T(Ai).
Then the mapping 7 : I* — I is called a fuzzy topology (or gradation of openness
[3]) on X. We call the ordered pair (X,7) a fuzzy topological space. The value 7(A)
is called the degree of openness of A.

Definition 2 ([1]). An intuitionistic fuzzy set A in a set X is an object having
the form A = {(z, pa(z),va(x)) : £ € X} where the functions g4 : X — I and
Y4 : X — I denote the degree of membership and the degree of nonmembership of
each element = € X to the set A, respectively, and 0 < pa(zx) + y4(z) < 1 for each
z€X.

Definition 3 ([10]). An intuitionistic gradation of openness (briefly IGO) of fuzzy
subsets of a set X is an ordered pair (7,7*) of functions 7,7* : IX — I such that
(IGO1) 7(A) +7*(A4) < 1, for all A € IX;
(IGO2) 7(0x) = 7(1x) = 1,7*(0x) = 7*(1x) = 0;
(IGO3) VA, B € I, (AN B) > 7(A) A7(B) and 7*(AN B) < 7*(A) vV 7*(B);
(IGO4) For every subfamily {4; : i € J} C I*, 7(Uses A;) 2 Nieg 7(A;) and
T*(Uies A;) < Vieq 7 (4).

Then the triplet (X, 7, 7*) is called an intuitionistic fuzzy topological space (briefly
IFTS) on X. 7 and 7* may be interpreted as gradation of openness and gradation

of nonopenness, respectively.

Definition 4 ([10]). Let X be a nonempty set and F, F* : IX — I be two functions
satisfying
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(IGC1) F(A)+ F*(A) <1, for all A € IX;

(1GC2) F(0x) = F(lx) = 1, F*(0x) = F*(1x) = 0;

(IGC3) VA,B € IX, F(AUB) > F(A) A F(B) and F*(AU B) < F*(A) vV F*(B);

(IGC4) for every subfamily {A; : i € J} C IX, F(Niey A;) > Neg F(A4;) and
F*(Nies Ai) < Vies F*(As).

Then the ordered pair (F, F*) is called an intuitionistic gradation of closcdness [10]

(briefly IGC) on X. F and F* may be interpreted as gradation of closedness and

gradation of nonclosedness, respectively.

Theorem 5 ([10]). Let X be a nonempty set. If (7,7*) is an IGO on X, then the
pair (F,F*), defined by F(A) = 7(A°), F*,+(A) = 7*(A°) where A° denotes the
complement of A, is an IGC on X. And if (F,F*) is an IGC on X, then the pair
(T, 7* ), defined by Tr(A) = F(A®), 7* 5+ (A) = F*(A°) is an IGO on X.

Definition 6 ([10]). Let (X,7,7*) and (Y,0,0*) be two IFTSs. A mapping f :
X — Y is called a gp-map if 7(f1(A)) > 0(A) and 7*(f~1(A)) < o*(A) for every
Ael¥,

Definition 7 ([9}). Let (X,7,7*) be an IFTS, A € IX and r € [0,1). Then the
r-closure (resp., r-interior) of A, denoted by cl,.A (resp., i,A), is defined by cl, A =
K € I* : F(K) > 0 and F*»(K) < 1,4 C K} (resp., i;A = U{K € IX :
7(K) > 0and 7™(K) < r, K C A}).
Theorem 8 ([9]). Let (X,7,7*) be an IFTS and A,B € IX, r € [0,1). Then

(1) e (0x) = 0x,

(2) ACd,A,

(3) crA=d(cl.A),

(4) crAUdl,.B C cl.(AU B).

Definition 9 ([9]). Let (X,7,7*) and (Y,0,0*) be two IFTSs, and r € [0,1). A
mapping f : X — Y is a r-gp-map iff 6(A) < 7(f71(A4)) and 7*(f"1(4)) < o*(A),
for each a fuzzy set A in Y such that o(A) > 0 and 0*(4) < r. A mapping
f: X =Y is a weakly r-gp-map iff 7(f71(A4)) > 0 and 7*(f~1(A)) < r, for each
fuzzy set A € IY such that o(A) > 0 and 6*(4) < r.

Theorem 10 ([9)). Let (X,7,7*) and (Y,0.0%) be two IFTSs, r€[0,1). If a
mapping f: X — Y is a weakly r-gp-map, then we have

(1) f(clrA) € clrf(A) for every A € IX,
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(2) cdr(f7HA)) C fYcl A) for every Ae IY,
(3) f71(irA) Cir(f~1(A)) for every A € IY,

3. MaIN RESULTS

We introduce the concepts of r-gp-open map, weakly r-gp-open map and several
types compactness in intuitionistic topological spaces and investigatc some proper-
ties of them.

Definition 11. Let (X,7,7*) and (Y.0,0*) be two IFTSs, 7 € [0,1). A mapping
f:X — Y is called
(1) a r-gp-open map if T(A) < o(f(A)) and o*(f(A4)) < 7*(A), for every A € IX
such that 7(A) > 0 and 7*(4) < r;
(2) a r-gp-closed map if F-(A) < F,(f(A)) and F*5(f(A)) < F*.+(A), for
every A € IX such that F,(A) > 0 and F*,-(A) < r.

Definition 12. Let (X,7,7*) and (Y,0.0*) be two IFTSs, r € [0,1). A mapping
f: X — Y is called
(1) a weakly r-gp-open map if o(f(A)) > 0 and o*(f(A)) < r, for every 4 € IX
such that 7(A4) > 0 and 7*(A4) < r;
(2) a weakly r-gp-closed map if F,(f(A)) > 0 and F*,+(f(A)) < r, for every
A € I¥ such that F,(4) > 0 and F*,-(4) < r.
Every r-gp-open (resp., r-gp-closed) maps are weakly r-gp-open (resp., r-gp-
closed) maps but the converse may not be true.

Example 13. Let X = I and let N denote the set of all natural numbers. For each
n € N, we consider pn, € IX such that p,(z) = %:c for z € X.
Define 7,7* : IX — I by

7(0x) =7(1x) = 1,7"(0x) = 7" (1x) = 0;

no o, 2 '
T(n) = et (un) = s for each n € N;

7(1) = 0,7*(1) = 1 for all other fuzzy set pu € IX.
And define 0,0* : IX — I by

0(0x) =o(lx) =1,0"(0x) = o*(1x) = 0;

1, 1 .
U(un) = n—+1-,o’ (,Un) = ntl fOI‘ each n in N;
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o(p) = 0,06*(un) = 1 for all other fuzzy set p € IX.

Then the pairs (7,7*) and (0, 0™) are two intuitionistc gradations of openness on X.

Let r = % and f : (X,7,7*) — (X,0,0*) be the identity mapping. Then f is a
weakly r-gp-open map but not a r-gp-open map. In the same way, we can show that
a weakly r-gp-closed map may not be a r-gp-closed map.

Theorem 14. Let (X, 7,7*) and (Y,0,0*) be two IFTSs, andr € [0,1). If f : X —
Y is a weakly r-gp-open map, then f(i,A) C i.(f(A)) for every A € IX.
Proof. For A € IX, we have that
f(@rA) = flJU{U € I* : 7(U) > 0 and 7*(U) < r,U C A}]
CU{f(U) eI :7(U) > 0 and *(U) <, f(U) C f(A)}]
CU{f(U) eIV : 0(f(4)) > 0 and o*(U) < 7*(U) < r, f(U) C f(A)}
CU{KeI":0(K)>0and o*(K) <, K C f(A)}
= ir(f(4))-
Thus the proof is obtained. O
Corollary 1. Let (X, 7,7*) and (Y,0,5*) be two IFTSs, andr € [0,1). If f: X - Y
is a r-gp-open map then f(irA) C i.(f(A)) for every A € IX.

Theorem 15. Let (X,7,7*) and (Y,0,0*) be two IFTSs, and v € [0,1). If f :
X — 'Y is an injective weakly r-gp-closed map, then cl.(f(A)) C f(cl,A) for every
AeTX.

Proof. Let A € IX; then since f is an injective weakly r-gp-closed map, we have
flelpA) = fIN{U € I* : F,(U) > 0 and F*(U) <r,AC U}
= N{{(U) € I¥ : () > 0 and F*,(U)) <1, f(4) € f(V)}
2N{f(U) € I* : F(F(U)) > 0 and F*,-(f(U)) <, f(A) C F(U)}
2 cl f(A).
Thus it follows cl.(f(A)) C f(cl.A) for every A € IX. (W

Since every r-gp-close map is a weakly r-gp-closed map, we get the following
theorem.

Theorem 16. Let (X,7,7*) and (Y.0,0*) be two IFTSs, and and v € [0,1). If

[+ X — Y is an injective r-gp-closed map, then cl.(f(A)) C f(cl,A) for every
AeIX.
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Definition 17. Let (X,7,7*) be an IFTS, and r € [0,1). A family {4; € IX :
7(A;) > 0 and 7*(A) < r,i € J} is called an intuitionistic fuzzy r-cover if Ujc 7 A; =
1x.

Definition 18. For r € [0,1), an IFTS (X, 7,7*) is said to be intuitionistic fuzzy
7-compact if for every intuitionistic fuzzy r-cover {A; € IX : 7(4;) > 0 and 7*(4;) <
r,i € J} of X, there exists a finite subset J, of J such that U;cj, A; = 1x.
Theorem 19. Let (X,7.7*) and (Y,0,0*) be two IFTSs, and v € [0,1) and let
f X — Y be a surjective weakly r-gp-map. If (X,7,7*) is intuitionistic fuzzy
r-compact, then so is (Y,0,0*).

Proof. Obvious. 0

Definition 20. For r € [0,1), an IFTS (X, 7,7*) is called nearly intuitionistic fuzzy
r-compact if for every intuitionistic fuzzy r-cover {A; € IX : 7(4;) > 0 and 7*(4;) <
.1 € J} of X, there exists a finite subset J, of J such that U;c ir(cl-(A:)) = 1x.

Theorem 21. For r € [0,1), an intuitionistic fuzzy r-compact IFTS (X.7,7*) is
nearly intuitionistic fuzzy r-compact.

Proof. Let {A; € I* : 7(A;) > 0 and 7*(4;) < 7,4 € J} be an intuitionistic fuzzy
r-cover of X; then there exists a finite subset J, of J such that U;cj, (4;) = 1x.
Since 7(4;) > 0 for all ¢ € J, by Theorem 2.8 we have A; = i.(4;) C ir(cl-(4;)).
Thus 1x = Useg,Ai € Uieg,ir(cly(4;)). Hence (X, 7,7*) is nearly intuitionistic fuzzy
r-compact. [
Remark 22. In Theorem 3.12, the converse of implication may not be true. For
if (X,7,7*) is an IFTS and 7*(u) = 0 for all u € IX, then the (X, 7,7*) is a fuzzy
topological space in Sostak’s sense. Since a nearly fuzzy compact space is not fuzzy
compact, so we can say a nearly intuitionistic fuzzy r-compact IFTS is not always
intuitionistic fuzzy r-compact.

Definition 23. For r € [0,1), an IFTS (X, r,7*) is said to be almost intuition-
istic fuzzy r-compact if for every intuitionistic fuzzy r-cover {4; € IX : 7(4;) >
0 and 7*(4;) < 7r,4 € J} of X, there exists a finite subset J, of J such that
Uiesoclr(Ai) = 1x.

Theorem 24. Forr € [0,1), a nearly intuitionistic fuzzy r-compact IFTS (X, 7,7*)
is almost intuitionistic fuzzy r-compact.

Proof. Let {A; € I : 7(4;) > 0 and 7*(4;) < 7,7 € J} be an intuitionistic fuzzy
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r-cover X; then there exists a finite subset J, of J such that U;c s, i-(cl-(4;)) = 1x.
Since ir(cl-(A;)) C . (A;) for each i € J, 1x = Ujey,ir(clr(4;)) C Ui, clr(4;). So
Uies,clr(A;) = 1x. Hence (X, 7,7*) is almost intuitionistic fuzzy r-compact. 0

As Remark 3.13, we can say that an almost intuitionistic fuzzy r-compact IFTS
is not always a nearly intuitionistic fuzzy r-compact IFTS.

Theorem 25. Let (X,7,7*) and (Y,0,0*) be two IFTSs, r € [0,1) and f: X =Y
a surjective, weakly r-gp-map. If X is almost intuitionistic fuzzy r-compact, then so
isY.
Proof. 1t is obvious. O
Corollary 2. Let (X,7,7*) and (Y,0,0*) be two IFTSs, and r € [0,1) and let
[+ X =Y be a surjective, weakly r-gp-map. If X is nearly intuitionistic fuzzy
r-compact, then Y is almost intuitionistic fuzzy r-compact.
Theorem 26. Let (X,7,7*) and (Y,0,0*) be two IFTSs, r € [0,1) and f: X - Y
a surjective, weakly r-gp-map and r-gp-open map. If X is nearly intuitionistic fuzzy
r-compact, then so is Y.
Proof. Let {A; € I¥ : 0(A;) > 0and 0*(4;) < 7,i € J} be an intuitionistic
fuzzy r-cover of Y. Then 1x = f~}(ly) = Uicsf~'(A;). Since f is a weakly
r-gp-map, we have an intuitionistic fuzzy r-cover {f71(4;) € IX : 7(f 1(4)) >
0 and 7*(f~1(A4;)) < 3 € J} of X. And since X is nearly intuitionistic fuzzy 1-
compact, there exists a finite subset J, of J such that Use i (cl-(f71(A:))) = 1x.
Thus by hypothesis, we have
1Y = UiEJof(ir(dr(f_l(Ai))))

- UieJoir(fClr(f_l(Ai)))

C Viesir(F (£~ (clr(42))))

= Uieg,ir(clr (Ai))-

Thus (Y, 0,0*) is nearly intuitionistic fuzzy r-compact.
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