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A STUDY ON FUZZY TOPOLOGY ASSOCIATED
WITH A LATTICE

Tapas KUMAR MONDAL? AND S. K. SAMANTAP

ABSTRACT. In this paper we define a topology (analogous to Chang-type fuzzy
topology) and a fuzzy topology (analogous to Hohle-type fuzzy topology) associated
with a lattice and study some of their properties.

0. INTRODUCTION

After the introduction of fuzzy subsets by Lotfi Zadeh {20}, various generalizations
of the concept of fuzzy subsets such as L-fuzzy sets, rough sets, interval-valued fuzzy
sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, intuitionistic
fuzzy rough sets etc. were studied by many authors. For references see [1], [4], [10},
[15], etc. On the otherhand, Chang [2] was the first to introduce the concept of a
fuzzy topology on a set X by axiomatizing a collection T' of fuzzy subsets of X,
where he referred to each member of T as an open set. In his definition of fuzzy
topology, fuzziness in the concept of openness of a fuzzy subset was absent. The
fundamental idea of a fuzzy topology with fuzziness in the topology, i.e., a topology
being a fuzzy subset of a power set was first appeared in a paper of Hohle [6] in 1980.
Subsequently, different authors such as Kubiak [7], Sostak [16], Samanta et. al. [12],
Ying [18], Ramadan [11] developed this idea idependently. Fuzzy topologies were
also studied in intuitionistic fuzzy sets (3], interval-valued fuzzy sets (13}, interval-
valued intuitionistic fuzzy sets [14], L-fuzzy sets, etc. It is to be noted that the
collections of all fuzzy subsets, interval-valued fuzzy sets, intuitionistic fuzzy sets,
interval-valued intuitionistic fuzzy sets, rough sets, intuitionistic fuzzy rough sets,
L-fuzzy sets etc. form lattices w.r.t. the inclusion relation. This initiates us to
study topological structure (both Chang-type and Héhle-type fuzzy topology) on a
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lattice so that fuzzy topologics on various types of fuzzy sets could be obtained as a
particular choice of the lattice. In this connection it is worth mentioning the work
of G. Nébeling [9] and P. Hamburg & L. Florescu [5].

In Scction 1 of this paper, we give some preliminary results on a lattice.

In Section 2, we define a topology (analogous to Chang-type fuzzy topology) asso-
ciated with a lattice and study its propertics.

In Section 3, we define a fuzzy topology (analogous to Héhle-type fuzzy topology)
associated with a lattice and study different properties on this structure.

In Section 4, we define subspaces of a fuzzy topological lattice space and study its
properties.

In Section 5, we define gradation preserving maps and study its properties.

In Section 6, we define fuzzy lattice closure of an element in a fuzzy topological
lattice spacc and cstablish some characteristic propertics of the fuzzy lattice closure
opcrator.

In Scction 7, we show that the category of topological lattice spaces and continuous
maps is a bireflective full subcategory of the category of fuzzy topological lattice
spaccs and gp-maps in our sense. Further, it is obscrved that the category of fuzzy
topological lattice spaces and gp-maps in our sensc is a topological category.

In Scction 8, the concept of fuzzy gradation of opcnness as introduced by us [17] is

developed in this lattice setting.

1. NOTATIONS AND PRELIMINARIES

Let (S, <) be a lattice with Og and 1g as the lcast element and the greatest
clement respectively and 7 be an order-reversing involution. For all @ € S, a is
called the complement of a. Denote by S, the set {b(# 0s) € S5 bAY = 0s}. For
a,be S.definca<bifa<band a#b.

Definition 1.1. A lattice S is said to be dense if for any r,s € S withr < s, At € S
such that r <t < s.

Theorem 1.2. If a complete lattice S is dense then r = V{s;s <r}.

Proof. Let r, = V{s;s < r}. Then r, < r. If possible, let 7, # 7. Then 7o < 7.

By denscness of S, 3s € S s.t. r, < s < r, a contradiction, since 7, = V{s;s < 1}
Hence 7 = V{s;s < r}. O



A STUDY ON FU2ZY TOPOLOGY ASSOCIATED WITH A LATTICE 169

For a complete lattice S and for P C S, denote V{a;a € P} by VP.

Definition 1.3. Let S be a complete lattice. Then S is said to possess sup property
ifforany PC S, VP>s=3p€e Pst. p>s.

Theorem 1.4. Let S be complete and dense, ro,to € 5. If s <t = 5 < 7o then
To 2 to.

Proof. Since s < t, = s < 1, it follows that 7, is an upper bound of {s;s < t,}.
Since S is dense, t, = V{s;s < to}. So, to < 70. 0

Definition 1.5. Let S be complete and for a (# 0s) € S, let S(a) = A{b > a;bAY =
0s}. Then S(a) is called the support of a.

Note 1.6. If S is complete then S(a) > a.

Definition 1.7 ([19]). Let S be a complete lattice. S is called infinitely distributive
(briefly ID), if S satisfies both following two conditions, called the 1st infinitcly
distributive law and the 2nd infinitely distributive law respectively:

(ID1) Va € S, VB C S, aA(VB) = Veep(a Ab),

(ID2) Va € S, VBC S, aV (AB) = Apep(a V).

Note 1.8. If S is complete and ID then S(a) € S..

Definition 1.9. a € S, is said to be a minimal element if b € S,, b < a implies
b = a. The sct of all minimal elements is denoted by X(S).

Definition 1.10. Let S be complete and ID. Then a (# 0g) € S is said to be a
fuzey point (briefly FP) of S if S(a) € X(S). The set of all FPs of S is denoted by
P(S).

Remark 1.11. Let S be complete and ID. Then X(S) C P(S). In fact a € X(S) =
a €S, =a=S8(a)=ac P(S).

Definition 1.12. Let S be complete. Then X(S) is said to be generative if b €
S. = 3A = {p;;i € A} C X(S) such that b = Vieapi.

Definition 1.13. Let S be complete and ID. Then S is said to be fuzzy point
generative (briefly FP-generative) if for a (# 0g) € 8, 3 {b;;i € A} C P(S) such
that @ = Vieab;.
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Theorem 1.14. Let S be complete and ID. If X(S) is generative then S is FP-
generative.

Proof. a (#£0s) € S =8(a) € Sc = I{pi;i € A} C X(S) such that S(a) = Vicap:
(since X(S) is generative). Then a = a A 8(a) = Vieala A pi) = Vieab;, where
b; = aAp;, 1 € A. Without loss of generality, assume b; # 0g. Now, for: € A, b; < p;
and p; € X(5) C S.. SoS(bi) < ps, © € A, since S(b;) # 05 and p; € X(S), it follows
that S(b;) = p; € X(S), which implics b; € P(S), i € A. Hence S is FP-gencrative.

Definition 1.15. A fuzzy point p is said to belong to a € S if p < a. We denote it
by p € a.

Remark 1.16. If S is complete, ID and X (S) is generative, then fora,b € S, a =5
ifp€asepch

Definition 1.17. A FP q is said q.c. to b€ S if a £V. It is denoted by agbh. The
sct {a € P(S);agb} is denoted by Q(b).

Definition 1.18. Let S be a lattice and a € S. Then « is called coprime if o > Qg
andVa,be S, a<avb=a<aora<h

Theorem 1.19. Let § be complete and ID. Then
(1) aqls, a 40s, V a € P(5),
(2) agb,b<c=agc, Va€ P(S), VbceS,
(3) agby,aqby = aq(b; Ab2),V a € P(S) such that a is coprime and by,by € S.

The proof is straightforward.

Definition 1.20. Let S and S; be two complete lattices and f : S — S7 be a
mapping such that f(a) = 0g, iff a = 0gs. Define f1:8 — Sby f‘l(b) =
V{a € S;f(a) < b}. If b ¢ Img(S), then define f~1(b) = Os. f is called order-
preserving if V a,b € S, a < b= f(a) < f(b). f is called arbitrary join-preserving
ifVa; €8, i€A, f(Vieaa;) = Vieaf(ai). f~1 is called complement preserving
ifvbe S, f/) = (fLp). f~1 is called arbitrary join-preserving (finite
meet-preserving) if f~1(Vieabi) = Vieaf b)), Vb € S1, i € A (F7H(AL b)) =
A fY b)), Y b € 81, i=1,2,..,n).

Theorem 1.21. Let S and S1 be two complete lattices and f : S — S be a mapping
such that f(a) = 0s, iff a = 0s. Then we have
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(1) FfYb) <b, Vbe Sy, if f is arbitrary join-preserving,

(2) a<ff(a), Va€s,

(3) by <ba= f(by) < fi(b2), ¥V by,b2 € Sy,

(4) f(hieaas) < Neaflas), Ya; €S, 1 € A, if f is order-preserving,
(6) f'(1s,) =1s, f71(0s,) =0s.

The proof is straightforward.

2. ToPOLOGY ASSOCIATED WITH A LATTICE

In this section we shall define topology associated with a lattice and study some
of its properties.

Definition 2.1. Let S be a complete latticc and T' = {a; € S ; ¢ € A} be a
subcollection of S. Then T is said to form a topology if the following three axioms
hold:

(1) 05, 15 €T,
(2, €T, i€ A= Vieaa; €T,
(3 a, beT=aAbeT.

T is called a topology associated with S and (S, T) is called a topological lattice space
(briefly TL-space). Each element of T is called an open member. An element of S is
called a closed member with respect to T if its complement belongs to 7. We shall
denote the collection of all topologics associated with S by C(S). If Ty, Ts € C(S),
then we say Ty is coarser than Ts or say Tb is finer than T1 if Ty C T5.

Remark 2.2. This topology is analogous to Chang-type fuzzy topology. In fact
if § = Lattice of all fuzzy subscts of a nonempty set X with respect to inclusion
relation ‘<’ then T is a Chang-typc fuzzy topology.

Definition 2.3. Let T € C(S). A subcollection B of T is said to be a base for T if
a € T can be expressed as a = Vieaas, a; € B, Vi€ A.

Definition 2.4. Let T € C(S). A subcollection S of T is said to be a subbase for
T if the family of all finite meets of members of S forms a base for T'.

Definition 2.5. Let T € C(S). Then the closure of a € S, denoted by cl(a), is
defined by
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cdl@)=nA{b; b>a, d €T}

Theorem 2.6. Let T € C(S). Then we have
(1) c(0s) =0s, cl(ls) =1,
(2) cl{a)>a, Va€eS,
(3) d(aVb)=clla)Vclb),
(4) c(c(a)) = clla).

The proof is straightforward.

Definition 2.7. Let the lattice S be complete and ID. Let T € C(S), p € P(S),
a € S. Then a is said to be a neighborhood (briefly nbd) of p if 3 g € T such that
p€g < a. The collection of all nbds of p is denoted by N(p).

Theorem 2.8. Let the lattice S be complete, ID, FP-generative and T € C(S).
Thena € T iff a € N(p), V p€a.

Proof. Obviously a € T = a € N(p), V p€a. Conversely, suppose a € N(p), V p€a.
Then V p€a, 3 b, € T such that péb, < a: Since S is FP-generative, a = V{p €
P(S) ; p€a} < V{b, ; p€a} < a. Hence a = V{b, ; p€a} € T. O

Theorem 2.9. Let the lattice S be complete, ID, FP-generative and T € C(S). Let
p € P(S). Then

(N1) p€a, YV a € N(p),

(N2) b>a€ N(p) = be N(p),

(N3) by, by € N(p) = by Aby € N(p),

(N4) be N(p) = 3 a € N(p) such that a € N(g), V g€a.

The proof is straightforward.

Theorem 2.10. Let the lattice S be complete, ID, FP-generative and FPs of S be
coprime. Let for p € P(S), N(p)(# ¢) C S be such that (N1)-(N4) of Theorem 2.9
holds. Let

T={a€S; acN(p), Vpéa}.
Then T € C(S) and for p € P(S), a € N(p) iff a is a nbd of p with respect to T.
Proof. (1) Obviously 0g, 15 € T.

(2) Let a; €T, i € A and a = Veaa;. Let p€a. Since p is coprime, p€ay,, for some
i=1i, € A. Since a;, € T, a;, € N(p) and hence a € N(p). This implies that a € T.
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(3) Let a; € T, i = 1,2 and @ = a; A ag. Then p€a = p€ay, @ = 1,2 = q; €
N({p), i=1,2=>a=ayAag € N(p) = a € T. Hence T € C(S). Clearly a € N(p)
iff a is a nbd of p with respect to T'. O

Definition 2.11. Let S be a complete, ID lattice and T € C(S). Then b € S is
said to be a g-nbd of p € P(S) if 3 ¢ € T such that pgc < b. The set of all g-nbds of
p is denoted by Ny(p).

Theorem 2.12. Let the lattice S be complete, ID, FP-generative and T € C(S).
Then

(N1) 1g € Ny(p), 05 & Ny(p), ¥ p € P(S),

(N2) ¢>be Ny(p)=>ce Nyp),

(N3) b1,bo € Ny(p) = by Aby € Ny(p), if p is coprime,

(N4) ce€ Ny(p) = 3 (< c) g.c. top such that b€ Ny(t), ¥ t € P(S) g.c. tob.

The proof is straightforward.

Theorem 2.13. Let the lattice S be complete, ID, FP-generative and a € P(S) is
coprime. Let for each p € P(S), ](,7(1(1))(;4é @) C S satisfying (N1)— (N4) of Theorem
2.12. Let

T={a€S; ac Nyp), Vpe P(S) ge. to a}.
Then T € C(S) and a € Nq(p) iff a is a g-nbd of p with respect to T.

Proof. (1) Obviously 0g, 15 € T.

(2) Let 0; € T, i € A and a = Viepa;. Then p € Q(a) = p € Q(ay, ), for some
i =1, € A = a;, € Ny(p),since a;, € T = a € Ny(p), by (N2) = a (= Viepa;) € T
Hence T € C(S).

(3) Let a1,a2 € T and a = a; Aaz. Let p € Q(a). Then p € Q(a;), 1 = 1,2. Since
a; € T, a; € Ng(p), i = 1,2 and hence a; A ay € Nq(p) (by (N3)) which implies
aiNay=a€cT.

Obviously a € Nq(p) iff a is a g-nbd of p with respect to 7. O

Definition 2.14. Let (51,71) and (S2,T3) be two TL-spaces and f : S; — Sy be
a mapping such that f(a) = 0g, iff @ = 0g,. Then f is said to be continuous if
FHb) € Ty, Vb€ To.

Theorem 2.15. Let (S1,Ti) and (S2,T3) be two TL-spaces and f : S — S3 be a

mapping. Then the following statements are equivalent.
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(1) The mapping f is continuous,
(2) f7Ub) is a closed member in Sy, ¥ closed member b in So,

(3) flclla)) C cl(f(a))-

The proof is straightforward.

From now on, by the lattices S and L we mcan two complete and ID lattices with
1g, 1z respectively as their greatest clements and Og, Of, respectively as their least
elements and ' : § — S, ¢: L — L be order reversing involutions. By Lg we mean

L\{0.}.

3. GRADATION OF OPENNESS ASSOCIATED WITH A LATTICE

Definition 3.1. A mapping 7 : § — L satisfying the following three axioms is said
to be a gradation of openness (shortly GO) or fuzzy topology associated with S:

(GO1) 7(1s) = 7(0s) =11,
(GO2) 7(Via;) > Ni7(a;), Ya;, € S, 1 € A,
(GO3) 7(a Ab) > T(a) AT(b), a,bES.

For a € S, 7(a) is called the degree of openness of a. (S,7) is called a fuzzy topological
lattice space (shortly FTL-space). Denote the collection of all GOs associated with
S by m(S). '

Definition 3.2. Let 71,72 € m(S). Then 71 is said to be stronger than 7 if
r1(a) > m2(a), Va € S.

Definition 3.3. Let F : § — L be a mapping satisfying the conditions:
(GC1) F(ls) = F(0s) = 1.,

(GCQ) F(/\Z-ai) > /\iF(ai), Va; €8, 1€ A,
(GC3) F(aVb) > F(a) AF(b), a,be S.

Then F is called a gradation of closedness (shortly GC) associated with S.

Theorem 3.4. Let 7 (F) be a GO (GC) associated with S. Let 7p : § — L (Fy :
S — L) be such that 7r(a) = F(a') (Fr(a) = 7(d)), Va € §. Then 1 (Fy) is a GO
(GC) associated with S.

The proof is straightforward.
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Corollary 3.5. Let 7 and F be GO and GC associated with S respectively. Then
TF, =7, F;, =F.
Theorem 3.6. Arbitrary intersection of GOs is a GO.
The proof is straightforward.
Note 3.7. Define 79, 71 : S — L by 19(1s) = 70(0s) = 11, 70(a) = 0, Va €

S\ {0s,1s} and m(a) = 1, Va € S. Then 75, 71 € m(S) such that for any
T €m(S), n(a) < 7(a) < 71(a), Ya € S.

Theorem 3.8. (m(S),<) is a complete lattice with 7o and 71 as the smallest and
the greatest element.

The proof follows from Theorem 3.6 and Note 3.7.
Let 7 € m(S) and 7 € Lg. Define 7, = {a € S ; 7(a) >r}.

Theorem 3.9. 7. is a topology associated with S.

The proof is straightforward.
Definition 3.10. For each r € Lg, 7. is called r-level topology associated with S.

Theorem 3.11. Let F be a GC associated with S. Define Fr = {a € S;F(a) >
r}, r € Lo. Then F, satisfies

(1) 0g, 15 € Fr,
(2) a e F=>nNa,€EF, VieA a; €8,
(3) a1,a2 € F, = a1 Vaz € F,, Vaj,ap € S.

The proof is straightforward.

Theorem 3.12. Let 7 and F be GO and GC associated with S, respectively, such
that F(a) = 7(a’), Va€ S. Thena € 7, iffd’ € F,, Vr € L.

The proof is straightforward.
Theorem 3.13. Let 7 € m(S), L be dense and {7 ; r € Lo} be the family of all

r-level topology associated with S. Then this family is a descending family and for
each r € Ly, Tr = NgerTs-

Proof. If r > s, then obviously, 7, C 7. Hence {7 ; * € Ly} is a descending family
of topologies associated with S. Clearly, 7. C Ny<r7s, T € Lyg.
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Also, if a ¢ 7., then 7(a) < r implics 3 s € Lg such that 7(a) < s < r (by denseness
of L). So, a ¢ 75, for some s < r. Hence a ¢ Nyer7s. Consequently Ns<r7s C 7.

Hence 7, = NgepTs. 0

Theorem 3.14. Let {T, ; r € Lo} be a descending family of topologies associated
with S and let 7 : S — L be a mapping defined by

(@) =V{reLo; acT}.

Let L be dense and possess sup property. Then T is a GO associated with S. If
further for any r € Lo, Tr = Ns<r1s then 7. =T, Vr € L.

Proof. From the definition of 7, it is clear that 7(0s) = 7(ls) = 1. Let a; € S
and 7(a;) = k;, i = 1,2. If k; = 0p for some i, then obviously, 7(a; A az) >
7(a1) A 7(a2). Next suppose, k; > 0p, i = 1,2. Let s < 7(a1) A 7(az). Therefore
v{r : a; € T;} > s, i = 1,2. Then by sup property, 3 r; € Lg such that r; > s
and a; € Ty, i = 1,2. Let 7 = r1 Are. Then a; € T (T D T, N T;,, because
r<r,ro="T DT,T,) =a ANaz € T, = 7(a1 Aag) > r > s. By Theorem
14, 7(a; A ag) > 7(a1) A 7(az). Next, let a; € S and I; = 7(a;), ¢ € A. Let
I = Neali. If 1 = 0p, then obviously, 7(Vieaa;) > Aiea7(a;). So consider the
case when [ > 07. By denseness of L, 3n € Lsuch that { >n > 0p. l; > 1 >
n=>V{reL;ae€eT}>n=ac¢€T, forsomen<r; €L i€A Let
To = Aieami- Then a; € T;,, i € A. So, Vieaa; € Tr, = 7(Vieaa;) > 1o > n. Hence
7(Vieaa;) > I = Aiea7(a;) (by Theorem 1.4). Sincc a € T = 7(a) > 7 =a€ 7,
we have T C 7,. Next let @ € 7. Then 7(a) > r = V{s € Ly ; a € Ts} > r. Let
t < r. Then by denseness of L, 3 s € L such that s > ¢t and a € Ts. So, a € T;.
Therefore, a € MierTy. Then, a € T,.. So, 7. C T,.. Hence T, = 7;. O

Note 3.15. The GO 7 so obtained in the Theorem 3.14 will be referred to as the

GO gencrated by the descending family of topologies {T,. : 7 € Lo} associated with

S.

Corollary 3.16. Two GOs7 and 7' associated with S are equal iff 7 = 1;, Y1 € L.
The proof is straightforward.

Theorem 3.17. Let T be a topology associated with S. Define for each v € Lg, a
mapping TT : S — L by

i - T if a€T—{0 71 ’
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Then T" is a GO associated with S such that (T"), =T.

Proof. (GO1) is obvious. For (GO2), take a; € S, i € A. Let a = Viepa;. If
a ¢ T, then 34 = i, € A such that a;, ¢ T. Thus T"(a) = 0 = AieaT"(as).
If a € T, then either a € {0s,15} or a € T — {0g,15}. If a € {0g,1s}, then
obviously T7(a) = 11, > AicaT"(a;). If a € T —{0g, 15}, then a; # 0g, Vi € A and
3 i =14, € A such that a;, # 1l and hence a;, € T — {0s,1s}. Then T"(a) =7 >
Tm(a;,) > AieaT"(a;). Similarly (GO3) can be verified. Thus T" is a GO associated
with S where (T"), ={a € S; T"(a) >r}=T. O

Definition 3.18. If T is a topology associated with S then T" is called an r-th
gradation associated with S.

4. SUBSPACES

Theorem 4.1. Let L be dense and satisfies sup property. Let 7 be a GO associated
with S and a € S. Let

Se={anb; be S}
Then S, is a complete sublattice of S with a and Og respectively as the greatest and
the least element. Define a mapping 75, : S, — L by

75.(¢c) =V{T(b) ; c=aAb, be S}
Then 1s, is a GO associated with S,.

Proof. (GO1) is obvious. For (GO2), let a; € S5, i € A and | = AieaTs, (@) =
Niea(V{7(d) ; a; = a Ab,b € S}). Let r € L be such that r < l. Then 7g5,(a;) >
r, Vi € A. By sup property, 3 b; € S with a A b; = a; such that 7(b;) > r.
Now, Vieab; € S and a A (VieAbi) = Vieala A b;) = Vieaa;. Further, T(VieAbi) >
NieaT(b;) > 7. So, 75,(Vieaai) > 7(Vieab;) > r. By Theorem 1.4, 75,(Vieaa;) >
NieaTs,(a;). For (GO3), let s = 75,(a1) A 7s,(az). Let r < s. Then 3 b; € S such
that a; = a A b; and 7(b;) > r, ¢ = 1,2 (by sup property). Now, by Aby € § and
a A (by Abg) = (a Ab1) A(aAbg) = ay Aap. Therefore 7s,(a; A az) > 7(by Abg) >
7(by) A T(bg) > r. By Theorem 1.4, 75, (a1 A ag) > 7g,(a1) A 75,(a2). Hence 75, is a
GO associated with S,. O

Definition 4.2. The FTL-space (S, 7s,) so determined is called a subspace of the
FTL-space (S, 7) and 7g, is called the induced GO associated with S, from (S, 7).
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Theorem 4.3. Let L be dense and satisfies sup property. Let F' be a GC associated
with S and S, C S. Define a mapping Fg, : Sq — L by
Fs,(d) =V{F(b) ; d=aAnb,be L}.

Then Fs, is a GC associated with S,.
The proof is similar to that of Theorem 4.1.

Definition 4.4. Let a Ad’ = 0g. For c =a Ab € S, we define the complement of
¢, denoted by cf, by ¢ =a A ¥,

Property 4.5. The complement of ¢ € S, is unique.

Proof. Let ¢ = aAby = aAby. Let g = aAby, co = aAby. We shall show
that ¢; = ¢3. Now, ¢ = (@A b)) = (aAb) = d VY = d Vb, Therefore
aAd =an(@VH)=aA(a Vb)) =(and)V(aAb)=(aAnd)V(aAby). If
and =0g, then a Acd = aAb] =c; =aAby=cy. This proves the uniqueness of
ct. O

Property 4.6. The complementary opcrator { on S, is order-reversible.

Proof. Let ¢; < ¢g, where ¢; = a A by and ¢ = a A by. Therefore a Aby < a A by =

(anbr) > (anby) = a' V¥ > a/ Vb, = aA(a'Vb]) > an(d'Vby) = (ana’)V(anby) >

aANd)V(aAby). fanad =0g, we get a Aby > a Ab,. Therefore ¢ > cl. Hence 1
2 1 2 1 2

is order-reversible. ]

Property 4.7. The complementary operator t on S, is idempotent.
Proof. Let c=aAb. Then () = (aAb) =aA () =anb=c O

Theorem 4.8. Let 7 and F be GO and GC associated with S respectively and let
a € 8 be such that and’ =0g. If 7(z) = F(z'), Vz € S, then 15,(d) = Fg (d!) and
Fg, (d) = 7s,(d"), V d € S,.

Proof. For d € S,,
75,(d) = V{r(b) ; d=aAbbe S}
=V{F®); d=aAbbe S}
=V{F®); dt =anb,b €S} (sinced=arbed =aArd)
=V{F(g) ; d'=ang,g€S}=Fs,(d)
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Similarly, Fs,(d) = 75,(d!), V d € S,. O

5. GRADATION PRESERVING MAPS

Definition 5.1. Let S and S; be two complete lattices and f : § — S; be a
mapping such that f(a) = 0s, iff a = 0. Then f is called join admissible (meet
admissible) if f~1 is arbitrary join-preserving (finite meet-preserving). f is called
admissible if both these properties hold.

Definition 5.2. Let f: § — S; and g : $1 — S2 be two admissible mappings. Then
the mapping h: S — S, defined by h(a) = ¢g(f(a)), a € S is called the composition
of f with ¢ and is denoted by gof.

Theorem 5.3. Let f: S — S) and g: S; — Sy be two admissible mappings. Then
(1) (gof)™ < (@),
(2) (gof)™L = (f)"to(§)!, if g is order-preserving.

Proof. For b € S, (90f)7(b) = V{a € S ; g(f(a)) < b} and (/) to(@) 1)) =
(Hv{ce 815 g(e) <)) =V{(H)™O); g(c) < b} =V{V{a € §; fla) <
c}; glc) £b}. faeS, fla) <candg(c) < b then putting f(a) = ¢ we get
that f(a) = ¢ < c and g(f(a)) = g(c) < b. So, (9of)™1(%) < ((f)2o()™")(®)
i.e. (1) holds. If g is order-preserving then for a € S, f(a) < ¢, g(c) < b, we get
g(f(a)) < g(c) < b. So, ((£)™ 0(§)72)(b) < (9of)~*(b)- Thus (2) holds. 0

Definition 5.4. Let (S,7) and (S;,71) be two FTL-spaces and f : § — S1 be an
admissible mapping. Then f is said to be a gradation preserving map (gp-map) if
for cach b € Sy, 7(f~1(b)) > 11 (b).

Note 5.5. We shall consider continuous mapping or gp-map for admissible mappings
only.

Theorem 5.6. Let (S,7) and (S1,7’) be two FTL-spaces and f : S — S1 be a

mapping. Then f is a gp-map iff f: (S,7) — (S1,7}) is continuous, V r € Ly.

Proof. Suppose f is a gp-map. Then V b € 5i, T(fHb)) > 7/(b). Let b €
r!. Then 7/(b) > r = 7(f~1(b)) > r and hence f~1(b) € .. Hence f is continuous.
Conversely, let f : (S,7,) — (S1,7)) be continuous, V r € Lo, Let b € S;. If
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7/(b) = Os,, then 7(f~1(b)) > 71(b) holds. If 7/(b) = r € Lo, then b € 7/. By
continuity of f, f‘l(b) €1 => 'r(f_l(b)) > r = 7/(b). Hence f is a gp-map. O

Theorem 5.7. Let (S,T) and (S1,T1) be two TL-spaces and f : S — Sy be a
mapping. Then f : (S,T) — (81,T1) is continuous iff f : (S,T7) — (S1,T7) is a
gp-map ¥V r € Ly.

Proof. Suppose f : (S,T) — (S1,T1) is continuous. Take b € S;. Then we have
three possibilities: (1) b= 0g, or 1g,, (2) b€ Ty — {0s,,1s,}, (3) b¢ Ty.

In case (1), f~}(0s,) = 0s, /~'(1s,) = ls and hence TT(b) < T7(f~1(4)). In
case (2), b € Ty — {0s,,15,} = Tr(b) = r. By continuity of f, f~1(b) € T, and
hence T7(f~1(b)) > r. So, T{(b) < T7(f~1(b)). In case (3), b ¢ Ty = TT(b) = Og,,
and hence 0g, = T7(b) < T"(f~1(b)). Hence f : (S,T7) — (S1,T7) is a gp-map
V r € Lyg. Conversely, let f : (S,T7) — (S1,T7) is a gp-map V r € Lg. Then
Vbe S, TT(f1(b) > T (b). Now, take b € Ty = (I])r, by Theorem 3.17. This
gives TT(0) > r = T7(f 1)) >r= f1(b) e (T"), =T ie,be T = f1(b) e T.
Hence f: (S,T) — (S1,T1) is continuous. 0

Theorem 5.8. Let (S,7) be a FTL-space and f : S — S be a mapping. Let
{7} ; r € Lo} be a descending family of topologies associated with S;. Let 7, be the
GO associated with Sy generated by this family. Further suppose, for eachr € Ly, B,
is a base and S, is a subbase of 7.. Then the following results hold:

(1) f:(S,7) = (S1,71) is a gp-map f 7(f 1)) >r, Vbe ., Vre Ly,
(2) f:(S.7) — (S1,71) 1s a gp-map if 7(f~1(b)) >r, VbeE B, Vre L,
(3) £:(S8,7) = (S1,7) is a gp-map if 7(f b)) >, VbES,, Vre L.

Proof. (1) Let f : (S,7) — (S1,71) be a gp-map. Then for r € Loy, b € 7). =
7(f~1(b)) > 7 (b) > r. Conversely, supposc the condition holds. Let b € S; and
71(b) = r > 0r. Then b € 7. Therefore 7(f~1(b)) > r = 71(b). Hence f is a gp-map.
(2) Let f : (S.7) — (S1,71) be a gp-map. Then for r € Ly, b€ B, = b € 7.,
and hence 7(f~1(b)) > T1(b) > r. Conversely, assume that the condition holds.
Let b € S; and 71(b) = r > Or. Then b € 7/. Therefore 3 b; € B,, i € A, such
that b = Vieab;. Now f=1(b) = f~1(Vib;) = Vif~X(b;). Therefore 7(f~1(b)) =
T(Vif 71(B:)) > A (f1(8:))) > 7 (by the given condition) = 71(b). Hence f is a
gp-map.
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(3) Suppose the condition holds. Let b € S; and 71(b) = r > 0. Then b € 7,.
Therefore 3 b; € B, i € A. such that b = V;b;. Since b; € By, i € A, 3 d,; €
Sr, j =1,2,...,n; such that b; = AJ%,d; ;. Then b= Viea(AjL,d; ;). Now f1p) =
F(Viea(Afidig)) = Viea(F M (AfL1di)) = Viea(AjL1f 7 (di)). Therefore
7(fH0) = 7(Viea(Afiyf ~H(dig)))

> Aieat(AJEy f1(dsg))

> Niea(AfLy (7 (dig))

> r, by the given condition

= 71(b).

Hence f is a gp-map. The converse part is obvious.

Theorem 5.9. Let (S,7), (S1,71) and (Sa,72) be three FLT-spaces. If f : (S,7) —
(S1,71) and g : (S1,71) — (S2,72) be gp-maps then gof : (S,7) — (S2,72) is a
gp-map.

The proof follows from Theorem 5.3.

6. Fuzzy LATTICE CLOSURE OPERATOR

Definition 6.1. Let F be a GC associated with S. For each » € Lg and for each
a € S we define fuzzy lattice closure (briefly L-closure) by

c(a,r) = /\{b €S, b>a, F(b)> r}.

Theorem 6.2. Let F be a GC associated with S, L be dense and satisfies sup
property and let cl : S x Ly — S be the L-closure operator in (S, F). Then

(1) el(0g,7r) =0g, cl(lg,7) =1g, ¥ 1 € Ly,

(2) cla,r)>a, Vaes,

(3) cl(a,r) < cl(a,r’), if r <7/,

(4) c(aVb,t) =cl(a,t) V(b t), Vte Lo,

(5) ccl(a,t),t) = cl(a,t),

(6) ifr=V{t € Ly ; cl(a,t) = a}, then cl(a,r) = a.

Proof. (1) cl(0s,7) = A{b; b > 0g, F(b) > r}, since 0 > 0g, F(0g) = 11 > 7.
Hence cl(0s,7) = 0s. c(ls,7) = A{b; b > 1g, F(b) > r} = lg, since 1g >
ls, F(lg) =11 > r. The proof of (2) and (3) are obvious.
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(4) If a1 < ag, then
cl{ag,r) = AM{b; b> ap, F(b) > r}
> Mb; b> a1, F(b) > 7}
= cl(ay, 7).

Using this, we have cl(a V b,t) > cl(a,t) V cl(b,t). Again, cl(a,t) V cl(b,t) > a Vb,
using (2). As F is GC, so F(cl(a,t) V cl(b,t)) > F(cl(a,t)) A F(cl(b,t)). Also
Flel(a,)) = F(Mb; b> a,F(b) > t}) > A{F() ; b > a,F(8) > t} > t. So,
F(cl(a,t)Vcl(b,t)) > t. Therefore, cl(a,t)Vcl(b,t) > cl(aVb,t). Hence cl(aVb,t) =
c(a,t) Vel(b,t), Yt € Ly

(5) c(cl(a,t),t) = A{b; b> cl(a,t),F(b) > t} < cl(a,t) (since cl(a,s) > cl(a,s)
and F(cl(a,s)) > s). By (2), cl(cl(a,t),t) > cl(a,t). Hence cl(cl(a,t),t) = cl(a,?).
(6) Let r = V{t € Lo ; cl(a,t) = a}. Take t < r. By sup property, 3 p € Lo with
cl(a,p) = a such that t < p. Now, we have a > a and F(a) = F(cl(e,p)) 2 p > t.
Therefore F(a) > r (by Theorem 1.4). Thena < cl(a,r) < a. Hencecl(a,r) =a. [

Theorem 6.3 Let L be dense and satisfies sup property. Let cl: S x Lo — S be a
mapping satisfies (1) — (4) of Theorem 6.2. Let F : § — L be a mapping defined by

Fla)=V{re Ly; cfa,r)=a}, a € S.

Then F is a GC associated with S. Further, cl = clp iff (5) and (6) of Theorem 6.2
are satisfied by cl.

Proof. (GCl) : F(0s) = V{r € Lo ; cl(0s,r) = 0s} = 1p by (1). Similarly
F(lg) = 1s. .

(GC2) : Let a = Aseaa;. Then cl(a,r) < cl{as, ), V1 € Lo, Vi € A by (4). So,
cla,r) < Aijeacl(ai,r). Let a < AjeaF(a;). Then F(a;) > a, Vi € A. By sup
property, 3 s; € Lo such that cl(a;, s;) = a; and s; > a, Vi € A. Let s = Ajeas:.
Then by (2) and (3), cl(ai,s) = a;, Vi € A. So, by (4), cl(a,s) < clfai,s) =
a;, Vi€ A, ie, ca,s) < Aiecaa; = a, ie., cla,s) =a. So, F(a) 2 s 2 a. Hence,
by Theorem 1.4, F(Aicaai) > NieaF(a;).

(GC3) : Take o < F(a1) A F(a2), where a1, az € S. Then by sup property,
3 s; such that s; > o and cl(a;,8;) = a;, © = 1,2. Let s = s1 A s2. Then a; <
cl(ai, s) < cl(a;, 8;) = @, i = 1,2, by (2) and (3) i.e,, cl(a;,8) = a;, 1 =1,2. By 4),
cl(ay V ag, s) = cl(a1,8) V cl(az, 8) = a1 V ag. So, F(a V az) > s > a. By Theorem
1.4, F(ay Vag) > F(a1) A F(az).
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Now to prove the next part, suppose cl satisfies conditions (5) and (6) in addition
to the conditions (1)-(4) of Theorem 6.2. clp(a,r) =A{b>a; F(b)>r}. fs<r
then F(b) > r = F(b) > s= V{t € Ly ; cl(b,t) =b} >s=> 3t € Lo witht > ssuch
that cl(b,t) = b (by sup property) = b < cl(b, s) < cl(b,t) = b= cl(b,s) = b —(A)
= A{b>a; F() > r} < d(b,s). Therefore clp(a,r) < cl(b, s), where s < r and
b > a with F(b) > r. Now a > a and F(cl(a,r)) = V{t ; cl(cl(a,T),t) = cl(a,7)}.
Therefore F(cl(a,r)) > r (since cl(cl(a,r),7) = cl(a,r)). Therefore cl(a,r) > a and
F(cl(a,r)) > 7. So,

cdr(a,r) < cl(cl(a,r),s), where s <r
< df(cl(a,r),T)

= cl{a,r).

Next F(b) > r = cl(b,s) = b (by (A)), for s < r = cl(a,7) = b, by (6). Therefore
crp(a,r)y = A{b>a; F(b) > r} > c(a,r). Hence clp(a,r) = cl(a,r). The converse
part is obvious. O

Remark 6.4. If ¢l : S x Ly — S is a L-closurc operator on S, then for each
r € Ly, cly : S — S defined by cl.(\) = cl()\,r) is a closure operator on S.

Theorem 6.5. Let L be dense and satisfies sup property. An operator cl : §x Lo —
S is a L-closure operator for the FTL-space (S.7) iff cl, : § — S is a closure
operator for the TL-space (S, 1), r € Lg.

Proof. Obviously, ¢l is a L-closure operator for the FTL-space (S, 7) implies that
cl, is a closure operator for the TL-space (S,7,), Vr € Ly. Conversely, assume
that cl, is a closure operator for the TL-space (S,7.), Vr € Lg. Then (1), (2),
(4) and (5) of Theorem 6.2 are satisfied by cl. Since 7. D 7 for r < 7/, (3)
of Theorem 6.2 follows. Finally, to verify the condition (6) of Theorem 6.2, let
r = V{s € L, ; clfa,s) = a}. For t < r, by sup property, 3 s > ¢ such that
c(a,s) = a = a <cat) <cla,s)=a=>a=dlat)y=>a=Abe€Ly; b2
a,F(b) >t} = Fla)=F(A{be Lo; b>a,F(b)>t}) >AF{b€ Ly; b>a,F(b) >
t} >t So,Vt<r,ac F,=d €mn=d €M,y = d €7 (by Theorem 3.13)
= a € F, = cl(a,r) = a. a

Theorem 6.6. Let f : (S.7) — (S1,7') be a mapping. Then f is a gp-map iff
fel(b, 7)) < cl(f(b),r), ¥r € L,, Vb€ S.
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Proof. By Theorem 5.6, f is a gp-map iff f : (S,7,) — (81, 7,) is continuous
Vr € Ly, ie., iff f(cl(b,7)) < cd(f(b),7), Vr € Lo, Vb € S (by Theorem 2.5 and
Theorem 2.15). O

7. CATEGORY OF F'TL-SPACES

Let Sc denote the category of all TL-spaccs and continuous functions; FT denote
the category of all FTL-spaces and gp-maps; for each r € L,, F.T denote the
category of r-th graded FTL-spaces and gp-maps.

Theorem 7.1. (1) F,.T is a full subcategory of FT,
(2) For each T € Lo, Sc and F;T are isomorphic,
(3) F.T is a bireflective full subcategory of FT. Vr € L,.

Proof. The results (1) and (2) follow from the following facts: (7)" = 7 if 7 is
an r-th gradation of openness; (I"), = T if T € C(S) and f : (8,T) — (S1,Th)
is continuous iff f : (S,T7) — (S1,77) is a gp-map, Vr € Lo. In order to prove
(3), let us take a member (S,7) of FT. Then for 7 € Lo, (S, (7+)") is a member
of F,T and also Ig : (8,7) — (S,(7)7) is a gp-map. Let (S1,71) be a mem-
ber of F,T and f : (5,7) — (S1,71) be a gp-map. To complete the proof of
(3), we nced to check only that f : (S,()") — (S1.71) is a gp-map. In fact,
11(05,)=7(f"1(0s,)) = 7(0s) = (1:)7(0s) = ()" (f7'(0s,)) = 1p. Similarly,
m1(lg,)=(r)"(f}(1s,)). In case 71(a) = Of, then clearly, mi(a) < ()" (f~H(a)).
If 71(a) = r, then 71(a) < 7(f~*(a)) = f~'(a) € 7;, and hence () (fYa)) 2r=
m1(a). Thus f: (5,(7.)") — (S1.71) is a gp-map. O

D\ S, (t r)r)

s T (F T-object)
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Remark 7.2. Because of (2) and (3), henceforth Sc may be called a bireflective full
subcategory of FT.

Theorem 7.3. Let {(S;,7}) ; i € A} be a class of FTL-spaces, S be a lattice and
fi + S — S; is an admissible and order-preserving map for each i € A. Then 3 a
GO 1 associated with S such that the following conditions hold:

(1) for eachi € A, f;: (S.7) — (S, 7)) is a gp-map,
(2) if (8',7") is a FTL-space then an admissible map g : (S',7) — (S,7) is a
gp-map iff f;0g is a gp-map, Vi € A.

Proof. For each r € L, and for each j € J, define Tj, = { fj_l(b) ; b€ (7])r}. Recall
that (7/), = {b € S; ; 7j(b) > r} is the r-level topology associated with S; with
respect to TJ’-. It can be proved that each Tj, is a topology associated with S. It
is clear that {T}j, ; r € L,} is a descending chain of topologies associated with S.
For each r € L,, define S’T = U;jejTjr, and let T, be the topology associated with S
generated by S, as a subbase. It can be verified that {T. ; r € L,} is a descending
chain of topologies associated with S. Now, from Theorem 3.14 we have a GO 7
associated with S with respect to {7 ; r € L,}, where 7(a) = V{r € L, ; a € T,.}.
Firstly, we show that for each j € J, f; : (S.7) — (Sj,TJ’-) is a gp-map. For
this, let b € S; and let 7j(b) = r, r > 0r. Then f;'(b) € T}, C S, C T,. Thus,
'r(fj—l(b)) > r = 7/(b). Hence f; : (S,7) — (5, 7}) is a gp-map. So (1) is true. Next,
suppose ¢ : (S, 7') — (S, 7) is a gp-map. Since for each j € J, f;: (S,7) — (S5;,7})
is a gp-map, so by Theorem 5.9, fjog : (§',7) — (S},7]) is a gp-map. Conversely,
suppose for each j € J, fjog: (S',7') — (S;,7}) is a gp-map. We shall show that
g:(8,7") = (S,7) is a gp-map. In order to show this it is sufficient to check that
(by Theorem 5.8) 7/(§571(b)) > r, Vb € S,, Vr € L,. Let r € Lo, b € S,. Then
b € T, for some j € J. So, there is a € (), such that fj_l(a) = b. Since for each
j€J, {(TJ’)T ; 7 € Lo} is a family of topologies associated with S; with respect to 7
and since fjog : (5, 7') — (S;,7}) is a gp-map, by Theorem 5.8, 7'((fj09)"Ha)) >
ie., T’(g'l(fj‘l(a))) > r and thus 7/(§71(b)) > r. This completes the proof of
). O

Remark 7.4. Thus from the categorical results so obtained we observe that the
concept of FTL-spaces as introduced by us is a meaningful fuzzification of topological
spaces.
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8. Fuzzy GRADATION OF OPENNESS

In this section, firstly we introduce a notion of S-family which is derived from
the notion of fuzzy family as introduced by Sostak [16]. The operations of union,
intersection and complementation of an S-family is defined. Using these notion an

idea of fuzzy gradation of openness is introduced in lattice setting.
Definition 8.1. A mapping G : S — L is called an S-family.
Notation 8.2. For an S-family G, we denote S(G) = {a € S; G(a) > 0.}

Definition 8.3. We take two functions A, V: L x § — S satisfying the conditions
(aha) = o/Va' and (aVa)' = o/Ad’, V¥ (a,a) € L x S. Then we define for an §-
family G the operations A and V (with respect to A and V respectively) as VG =
Vaesig){G(a)Aa} and AG = Ages(g){9(a) Va}.

Definition 8.4. Let G be an S-family. Then an S-family G* is defined by G*(a) =
G(d),VYa € S.

Proposition 8.5. For an S-family G we have

(a) VO] = NG,
(b) [AG) = VvG*.

The proof is straightforward.

Definition 8.6. A mapping 7 : S — L is said to be fuzzy gradation of openness
(shortly FGO) if it satisfies the following axioms:

(FGO1) 7(1s) =7(0s) = 11,
(FGO2) For any S-family ¢

7(VG) > Asesg)(T(a) A G(a)),
(FGO3) For any finite S-family B = {%11, %ﬁ}
7(AB) > Aizy(7(a:) A B(as))-

Theorem 8.7. A GOT:8 — L is a FGO iff
(c1) 7(aha) > aAnT(a), ¥ a€ Lo,
(c2) 7(ava)=a' AT(a), Vo€ Loa.
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Proof. Suppose 7 is a GO satisfying (¢;) and (¢2) and G be an S-family. Then
T(VG) = 7[Vaes(g)(G(a)Aa)]
> Aaesg)T(G(a)Aa)
> Aaes(g)(G(a) AT(a)), by (c1).
For a finite S-family B = {%},....%ﬁ},
T(AB) = 7N (PiVas)]
> ALy (piVas)
> Az (pi A 7(@i)), by (c2)
= ANiz1(B(ai) A7(aq)).
Therefore 7 is a FGO. Conversely, let 7 is a FGO. Then 7 is a GO. Let a € S and
a € Lo;. Define an S-family G, : S — L by Ga(a) = a, Go(b) =0 if b(# a) € S.
Then
7(VGa) 2 AdesiGa)(Gald) A 7(d))
& 1(Ga(a)Aa) > Gy(a)AT(a)
& 1(aha) > ant(a).

Again,
7(AG,) = Ga(a)AT(a)
& 7(GL(a)Va) > a A 1(a)
& 7(a'Va) > anr(a).
Thus 7 is a GO satisfying (c;) and (cg)- O

Definition 8.8. Let 7 : S — L be a mapping. For, r € Lo, define . = {a €
S 7(a) >}
Theorem 8.9. Let 7 be a fuzzy gradation of openness. Then {7+}reL, is a descend-
ing family of L-fuzzy topologies (Chang-type) satisfying

(1) TVieao: = (Vi€ATay)

(2) a € 7 = aAa € Tanr and aVa € Typr, YV a € Ly .

Proof. Since 7 is a fuzzy gradation of openness, it is a gradation of openness and
hence {7 }reL, is a descending family of L-fuzzy topologies (Chang-type). Further,
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a € NieaTa, = 7(a) > oy, Vi€EA
= 7(a) > Vieaa;
= Q€ Tvcpay-
S0, NieaTa; C Tvicaa;- Obviously, v, pa: C NieATw;- Hence 1v;cpa; = NicAToy-
Next a € 7, = 7(a) > r. Then, by (c1), we have
T(aha) > a AT(a) > a AT = ala € Taar, ¥ a € Loy,
and by (c2), we have
T(aVa) > o A7(a) > &/ AT = aVa € Tyar, V a € Lo,
Hence {7, }reL, is a descending family of L-fuzzy topologies (Chang-type) satisfying
(1) and (2). O

Theorem 8.10. Let {T, : 7 € Lo} be a descending family of L-fuzzy topologies
(Chang-type) satisfying conditions (1) and (2) of Theorem 8.9, then the mapping
7:8 — L defined by 7(a) = V{r P a€ Tr} is a FGO such that 7, =Ty, v € Ly.

Proof. From Proposition 2.2 of [8], 7 is a gradation of openness and it satisfies
7, = Tp, ¥V 1 € Ly. Let 7(a) = s. If s = 0p, then obviously (c1) and (c2) hold. If
s >0, then
a€Ts=>a€T;
= alAa € Tans, V@ € Lo
= aAa € Tans, ¥V a € Lo (as Tans = Tans)
= 7(aAa) > aAs, Va€ Ly
= 7(aAa) > a AT(a), Va € Ly
Again,
a€tys=>acT;
= aVa € Toyps, Y € Lpy
= aVa € Typs, ¥ a € Lo (88 Tarns = Ta'ns)

= 7(avVa) 2 ' Ns, Va € Lo

= r(aVa) > o AT(a), Va € L.

Hence by Theorem 8.7, 7 is a FGO. d
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