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A FAST CONSTRUCTION OF GENERALIZED MANDELBROT
SETS USING MAIN COMPONENTS WITH EPICYCLOIDAL
BOUNDARIES

Young HEE GEuM?, KANG SuP LEE®* AND YOUNG IK KM€

ABSTRACT. The main components in the generalized Mandelbrot sets are under a
theoretical investigation for their parametric boundary equations. Using the bound-
ary geometries, a fast construction algorithm is introduced for the generalized Man-
delbrot set. This fast algorithm definitely reduces the construction CPU time in
comparison with the naive algorithm. Its graphic implementation displays the mys-
terious and beautiful fractal sets

1. INTRODUCTION

Some geometric properties of the generalized Mandelbrot set M have been inves-
tigated by a number of researchers [1-5, 7]. By establishing an epicycloidal boundary
equation of the main component of M, we provide a theoretical background for an
escape-time[l] algorithm rapidly constructing M shown in Figure 1. We denote
i = v/—1, the set of natural numbers by N, the set of real numbers by R and
the set of complex numbers by C. Let P.,* denote the k-fold composite mapping
P:(P.(P.(---))). An attracting period-k component(bulb) M}’ in M is a compo-
nent[6] of the set:

{c € C : there exists £ € C such that P.F(¢) = ¢,| %Pck(zﬂz:E < 1}.

When k = 1 it is called the main component(bulb) which is shaded in blue. We first
introduce a theoretical background regarding the properties of M. Throughout the

analysis we assume an integer n > 2.
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Figure 1. Typical examples of the degree-n bifurcation set

Definition 1.1. Theset S = {c€ C:c=re?,r >0,0 <0 < n/(n—1)} is called
the principal sector. The sets P = {c € C : c=re*m 1 > 0,¢m = mn/(n — 1)}
(for m = 1,2,--- ,2n — 2) are called the rays of symmetry.

Definition 1.2. Let Py(z) = 2" + ¢ with ¢, 2 € C. Then the degree-n bifurcation
set or the generalized Mandelbrot set is defined as the set

M = {ce C:klim P.*(0) %oo}.

If n = 2, then M reduces to the Mandelbrot set [1-5,7].

Theorem 1.1. The degree-n bifurcation set M is symmetric in the c-parameter
plane about Py, for allm € {1,2,---,2n - 2}.

Proof. See [4, p. 224]. 0

Theorem 1.2. Let B = 211—1. Then
M= {ce C: |Pck(0)|SBforallkeN}C {ce C: |c|§B}

Proof. See [3, p. 114-115). ]
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2. EPICYLOIDAL BOUNDARIES OF MAIN COMPONENTS

Let M { denote the boundary of M. Let I' = M NS, where § is the closure
of the principal sector S. The governing equation for M is characterized as a set
of c-values with ¢, z € C satisfying the following equations :

(1) P(z)=2"+c= 2z,

(2) IP(2)] = [na""] = 1.

Solving these two equations by means of a parameter v yields the following Theorem
2.1.

Theorem 2.1. Let ¢ € My and p = (1/n)YV). As shown in Figure 2, let
a fizred point P on a circle of radius p describe an epicycloid E as it rolls on the
outside of a circle of radius (n—1)p. Let ¢ denote a rolling angle traced by P. Then
¢ = p(ncosy — cosny) + ip(nsiny — sinny) with 0 < 9 < 27 lies on the epicycloid
E, that is, OM, = E.

Proof. We parametrize Eq.(2) so that 2! = (1/n)e*® with 0 < ¢ < 27 yields (n—1)
distinct solution branches z; = (l/n)l/("_l)ei(%)ﬂ(%) fork=0,1, --- ,n—2.
Let ¢ = ¢/(n — 1). Then Eq.(1) shows that

co =29 — 20" = p(ncosyp — cosny) +ip(nsiny —sinny), 0< 9y < 2n/(n—1)

defines a principal branch in the c-parameter plane. All other branches cx = 2z —
2™ are rotations of ¢y by an angle of 2k7/(n — 1). This implies that c¢(y) € M
has a period of 2 7/(n — 1) in ¢. For k = 0,1,2,--- ,n— 2, let Hy = {ck(¥) €
OMy : 2kn/(n —1) < ¢ < 2(k + 1)x/(n — 1)} denote an arc shown in Figure 2.
It is obvious that M, = 2;3 Hy. Hence a point ¢ € dM{ is parametrized for
¥ € [0, 27) with z, y € R such that

(@) c=c®) ==z(®) +iy(¥), v =p(ncosy — cosnyp), y = p(nsiny — sinnzp).

The above parametric equations represent the epicycloid E, a special case of a
general epicycloid whose point (z,y) is described by

a+b . . (a+b
5 )'gb, y= (a+b)sm¢—bsm( 5 )1/)
with a = (n — 1)p, b= p and ¢ € [0, 27). O

4) x=(a+b)cosz/)—bcos(
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Figure 2. An epicycloid E with an arc I’

An explicit calculation for ¢ € I' using Eq.(3) shows that

(5) ¢ =r(cosf +isinf), r = py/n? +1 —2ncos(n ~ 1)9,
- { Tan~!(ncosy — cosny, nsiny —sinny) for ¢ € I*
T w/2 for ¥ = cos (1 - 3)/2) if n=2"

where Tan~!(x,y) gives a polar angle of the point (z,y) and I* = [0,7/(n — 1)} if
n >3 or I* = [0,n] — {cos™((1 - +/3)/2)} if n = 2. The following Theorem 2.2
determines whether or not a given point ¢ = (z,y) € C belongs to M.

Theorem 2.2. Letw =7/(n—1), p= 1/n)Y" D rpim = (n — 1)p and rmez =
(n+ 1)p. For a given point (z, y), let r = VIt +1y2, 0 < 6 = Tan"Y(z,y) < 2m
and k = [f/w] be the integer part of 6/w. Let 6* = 6 — kw if k is even, and
6 = (k+ l)w — 0 if k is odd. Then there erist unique ¥ = vy and 0 = 0, satisfying
Eq.(5). In addition, we have the following criteria:

(a) if 7 < Tmin, then (z,y) € M.

(b) if Tmin £ 7 < Tmazs then

(z,y) € M/ for 6, < 6* and (z,y) & M/ for 6, > 6*.
(¢) > Tmaz, then (z,y) & M.

Proof. By Theorem 1.1, it suffices to consider I' with 6 = kw 6" for even k. Besides
the criteria, the existence as well as uniqueness for 1, and 6 is intuitively clear in

view of Figure 3. O

3. ALGORITHM AND COMPUTATIONAL RESULTS

Based on Theorem 2.2, we have developed a C++ subroutine INTM1(x,y,n)
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Figure 3. How to determine whether or not (z,y) € My’

checking whether or not (z,y) € M. The following is an algorithm for a fast
construction of M.

Algorithm 3.1.

Step 1. Let n. be the number of colors, ITER be the mazimum number of iterations,
BGCO be the background color and B = 97T, Select a rectangular region
Q covering {c € C : |c| < B}. Divide § into p x q subregions.

Step 2. For a point ¢ in a subregion, compute P (0) for all0 < j < ITER and store
the last (n. — 1) points.

Step 3. If |P.7(0)| > B for some j, then stop iterating and paint ¢ in BGCO.

Step 4. Use INTM1(z,y,n) to check whether or not (z,y) € M{. If c € M{, then
paint ¢ in a color number 1. If c ¢ M| and |P7(0)| < B for all 0 < j <
ITER , then
(1) compute the period k of the orbit [5] from the (n. — 1) stored points.
(2) (a) If1 <k < nc—1, then paint ¢ in a color number k,

(b) or else paint ¢ in BGCO.
Step 5. Repeat Steps 2 — 4 for all the remaining points in 2.

An implementation of the above algorithm displays Figure 1 showing typical exam-
ples of the generalized Mandelbrot set M for various values of n. It is interesting
to observe that &M represents an epicycloid in M while it represents a cardioid,
being a special case of an epicycloid, in the Mandelbrot set. An elementary theory
of plane curves shows that the resulting epicycloid is a nephroid when n = 3 and a
ranunculoid when n = 6.

Two escape-time algorithms constructing M are a naive algorithm that does not
use INTM1(z,y,n) and a fast algorithm that uses INTM1(z,y,n). Both algorithms
were implemented with C++ Builder 3.0 for the screen size of 300 x 300 pixels within
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216 iterations using a Pentium IV 2.8 Ghz personal computer under Windows XP
operating system. Table 1 lists CPU times in seconds fully constructing M for
both algorithms as a function of n. This fast algorithm has significantly reduced
construction CPU times.

Observe that the construction time for even n is longer than that for odd n. The
reason is that for even n each construction algorithm uses only one symmetry axis,
while for odd 7 it uses two symmetry axes. When (n — 1) is a multiple of 4, each
construction algorithm uses 4 symmetry axes. The current analysis can be extended

to the case when k = 2, despite the expected algebraic complexity.

Table 1. Construction CPU times in Seconds

Algorithms n

& Properties 2 3 1 5 6 7 3 g |- ] 1000

Naive Algorithm | 7.91 | 4.40 | 10.66 | 3.30 | 13.30 [ 7.20 [ 15.60 | 445 | --- | 122.59

Fast Algorithm | 2.01 | 1.16 | 2.53 | 0.87 | 2.79 [146 ] 2.91 094 ]--- | 5.27
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