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ON A QUADRATICALLY CONVERGENT ITERATIVE METHOD
USING DIVIDED DIFFERENCES OF ORDER ONE

Ioannis K. ARGYROS

ABSTRACT. We introduce a new two-point iterative method to approximate solu-
tions of nonlinear operator equations. The method uses only divided differences of
order one, and two previous iterates. However in contrast to the Secant method
which is of order 1.618..., our method is of order two. A local and a semilocal
convergence analysis is provided based on the majorizing principle. Finally the
monotone convergence of the method is explored on partially ordered topological
spaces. Numerical examples are also provided where our results compare favorably
to earlier ones [1], [4], [5], [19].

1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution z*
of the nonlinear equation

(1.1) F(z) =0,

where F is a Fréchet-differentiable operator defined on an open subset D of a Banach
space X with values in a Banach space Y.

A large number of problems in applied mathematics and also in engineering are
solved by finding the solutions of certain equations. For example, dynamic systems
are mathematically modeled by difference or differential equations, and their solu-
tions usually represent the states of the systems. For the sake of simplicity, assume
that a time-invariant system is driven by the equation z = B(z) (for some suitable
operator B), where z is the state. Then the equilibrium states are determined by

solving equation (1.1). Similar equations are used in the case of discrete systems.
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The unknowns of engineering equations can be functions (difference, differential, and
integral equations), vectors (systems of linear or nonlinear algebraic equations), or
real or complex numbers (single algebraic equations with single unknowns). Except
in special cases, the most commonly used solution methods are iterative — when
starting from one or several initial approximations a sequence is constructed that
converges to a solution of the equation. Iteration methods are also applied for solv-
ing optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the same
recursive structure, they can be introduced and discussed in a general framework.

The secant method is the most popular iterative procedure using two previous
iterates and divided differences of order one for approximating z*. The order of
the Secant method is 1.618... [1]-[5]. In the elegant paper of F.A. Potra [18] a
three point method was used and divided differences of order one (see also (26) and
(27)). This method is of order 1.839.... More recently Secant-like methods of order
between 1.618... and 1.839... were introduced in the works of Amat, Hernandez,
Gutierrez et al. {1]-[4], [11]-{13]. The question arises if it is then possible to realize
an iterative method using two previous iterates and divided differences of only order
one with at least quadratic convergence.

It turns out that this is possible. Indeed we introduce the method

(1.2) Tpt1 = T — (225 — mn_l,xn_ﬂ_lF(xn) (z-1,Zz0 € D) (n2>0)

for approximating z*. Here, a linear operator from X into Y, denoted by [z,y; F]

or simply [z, y] which satisfies the condition

(1.3) [z,9](z — y) = F(z) - F(y),
is called a divided difference of order one {8}, {14], [16]. Iteration (1.2) has a geomet-
rical interpretation similar to the Secant method in the scalar case.

In Sections 2 and 3, respectively, we provide a local and semilocal convergence
analysis for method (1.2) using Lipschitz-type conditions and the majorant principle
[14] as in [18]. The monotone convergence of method (1.2) is examined on partially
ordered topological spaces in Section 4 [8], [19], [21]. Numerical examples are also
provided where our results compare favorably to earlier ones [1}, [4], [5], [19].

2. LocAL CONVERGENCE ANALYSIS OF METHOD (1.2)

We can show the following local convergence result for method (1.2).
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Theorem 2.1. Let F be a nonlinear operator defined on an open subset D of a
Banach space X with values in a Banach space Y.

Assume:

the equation F(z) = 0 has a solution * € D at which the Fréchet derivative
F'(z*) exists, and is invertible;

the operator F is Fréchet-differentiable with divided difference of order one on

Dy C D satisfying the Lipschitz conditions:

(2.1) 1F' (@) F (z) - F'(a")]ll < allz — 2|,
(2.2) 17 (@) ([, ] — [z, 2" DIl < blly — 2"
and
(2.3) IF'(z*) " [y, 9] — 2y — =, 2])l| < elly — =%
the ball
(2.4) U*=U(@z*r*)={ze X |||z—z*|| <r*} C Do,
where
(25) "= . -
' T T a¥b+J@rbr a2
(2.6) for all z,y € Dy = 2y —x € Dy.

Then, sequence {z,} (n > 0) generated by method (1.2) is well defined, remains

in U(z*,r*) for all n > 0 and converges to x* provided that
(2.7) z_1, xo belong in U(z*,r™).

Moreover the following estimates hold for all n > 0:

bllzn — 2*|| + cllEn—1 — Znl|?
— allzn — z*|| = cllZn-1 — Zal|

(2.8) lzn41 = 2" < 5 5llzn — |-

Proof. Let us denote by L = L(z,y) the linear operator
(2.9) L=2y—ux,zx]
Assume z,y € U(z*,*). We shall show L is invertible on U(z*,7*), and

(210)  [IL7'F' @) < [1-ally — 27| - cllz —yl*) 7 < [1 - ar — de(r)?] 7
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Using (2.1) and (2.3), we obtain in turn:
(2.11)

[F' () F (z*) = LIl = [|F'(«*) " {([z*, 2*] = [y, 9]) + ([, 4] — [2y — =, z])]
ally — z*|| + clly — z||?
ar* + c[lly — z*|| + |]=* — z||}?
ar* +4c(r*)? < 1

IA N IA

by the choice of r*.

It follows from the Banach lemma on invertible operators [14] and (2.11) that
L1 exists on U(z*,r*), so that estimate (2.10) holds. We can also have by (2.2)
and (2.3):

(2.12)
I1F"(z*) " ([y, 2] = D)) = §1F' (=) [([y, 2*] = lws o)) + ([, 9] = D}
< |1F'(*) (s 2*] = (v, yD) Il + 1 (=) 7 (s y] = DI
< blly - 2*(| + clly — =
< br* + 4e(r*)?.
Moreover, by (1.2) we get for y = x5, T = Tp_1
l£nt1 = 2*l = || = Lz ([zn, 2*] = Ln)(@n — &)
< LAF @) - 1F' (@) (o, 2] = L)l - 20 — 27
Estimate (2.8) now follows from (2.10), (2.11) and (2.13). Furthermore from (2.10),
(2.11) and (2.13) we get

(2.13)

(2.14) 241 — 2*ll < ll&n — %[ <7*  (n20).

Hence, sequence {x,} (n > —1) is well defined, remains in U(z*,r*) for alln > —1

and converges to z*. That completes the proof of Theorem 2.1. 0

Let ,y,z € Do, and define the divided difference of order two of operator F at
the points z,y and z denoted by {z,y, 2| by

(215) [$3y’z](y‘z) = [ac,y] - [CL‘,Z]-

Remark 2.2. In order for us to compare method (1.2) with others [18] using divided
differences of order one, consider the condition

(216) I1F' (@) ([, 9] — [w, o))l < @l — ull + lly = vll)

instead of (2.1) and (2.2). Note that (2.16) implies (2.1) and (2.2). Moreover we
have:
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(2.17) a<2a
and
(2.18) b < 2a.

Therefore stronger but more popular condition (2.16) can replace (2.1) and (2.2) in
Theorem 2.1.
Assuming F has divided differences of order two, condition (2.3) can be replaced

by the stronger

(2.19) I1F ()" [y, 2,9) — 2y — @ 2, 9D - 2)]| < ey — =%,
or the even stronger

(2:20) 1F' ()" ([, 2, 9] — v, 9Dy = 2)]| < Ellu = olf*.

Note also that

(2.21) t<Et
and we can set
(2.22) c=7¢

despite the fact that € (or ¢) is more difficult to compute since we use divided
differences of order two (instead of one). Conditions (2.16) and (2.20) were used in
[18] to show method

(2.23) Ynt1 = Yn — ([Yns Yn—1] + Wn—2,¥a] — [yn—2,yn—1])_lF(yn) (n 2 0)
converges to z* with order 1.839. .. which is the solution of the scalar equation
(2.24) B2 —t—1=0.

Potra in [18] has also shown how to compute the Lipschitz constants appearing here
in some cases.

It follows from (2.8) that there exist a constant co, and N a sufficiently large
integer such that:

(2.25) |Zns1 — z*|| < collzn — z*||* for alln > N.

Hence the order of convergence for method (1.2) is essentially at least two, which is
higher than 1.839.... Note also that the radius of convergence r* given by (2.5) is
larger than the corresponding one given in (18, estimate (22)]. This observation is
very important since it allows a wider choice of initial guesses z_; and zpo.
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It turns out that our convergence radius 7* given by (2.8) can even be larger than

the one given by Rheinboldt [19] (see, e.g., [18, Remark 4.2]) for Newton’s method

and Example 2.3 that follows. Indeed under condition (2.17) radius ¥ is given by
1

2.26 R= 0=

(2.26) "R= 33

We showed in (7] that £ (or ) can be arbitrarily large. Hence we can have:

(2:27) rR < T

In [7] we also showed that r}, is enlarged under the same hypotheses and computa-
tional cost as in [19)].

We note that condition (2.6) suffices to hold only for z,y being iterates of method
(1.2) (see, e.g., Example 3.4).

Condition (2.6) can be removed if Dy = X. In this case (2.4) is also satisfied.

Finally delicate condition (2.6) can also be replaced by a stronger but more
practical one which we decided not to introduce originally in Theorem 2.1, so we
can leave the result as uncluttered-general as possible.

Indeed, define ball U; by

(2.28) U, =U(z* R*) with R*=3r".

If £,—1,2n, € U* (n > 0) then we conclude 2z, — zn—1 € Up (n > 0). This is true
since it follows from the estimates
1227 — zn—1 —z*|| < lzn — z*|| + llzn — Tn-1]]

2.29
(2.29) < 2|#n — 2*|| + |Tn-1 — 2*|| < 3r* =R* (n2>0).

Hence the proof of Theorem 2.1 goes through if both conditions (2.4), (2.6) are
replaced by
(2.30) U, C Do.

We complete this section with a numerical example to justify estimate (2.27).

Example 2.3. Let X =Y =R, z* = 0, D = U(0,1) and define function F on D
by

(2.31) F(z)=¢€"-1.
Using (2.1)-(2.3), (2.16) and (2.31), we obtain

(2.32) a=b=e—1, c=e and E:-;—.
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In view of (2.5) and (2.26), we have
(2.33) rr = .24525296 < .299040145 = r*.
We can also set R* = 3r* = .897120435.

3. SEMILOCAL CONVERGENCE OF METHOD (1.2)

We can show the following result for the semilocal convergence of method (1.2).

Theorem 3.1. Let F be a nonlinear operator defined on an open set D of a Banach
space X with values in a Banach space Y.

Assume:

the operator F has divided differences of order one and two on Dy C D;

there exist points £_1, zo n Dy such that 2o — z—y € Do and Ag = [2z0 —
z_1,2_1] is invertible on Dy;

Set A, = [2Tp, — Tn-1,Tn-1] (n > 0).

There exist constants o, 8 such that:

(3.1) 145 (2, 9] — [w, DIl < a(llz —ull + lly — o[,

(3-2) 145 ([ys 2, y] ~ [2y — =, 2, 9]l < Bllz — v

for all z,y,u,v € Dy, and condition (2.6) holds;
Define constants v,4 by

(3.3) lzo —z 1l £,

(3.4) 1A F (o)l < 6,

(3.5) 28y < 1

Moreover define 8,7, h by

(3.6) 6 = {(a+B7)? +36(1 - fr2)}",
_1-89°

(37) T At pBy+o’

and

(3.8) h(t) = =Bt — (a + By)E* + (1 - B¥*)t,

(3.9) § < h(r) = 1 w,ﬂ;

3 1-2842
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(3.10) U() = U(l‘o,T‘o) g Do,
where ro € (0,7] is the unique solution of equation
(3.11) h(t) = (1 - 26~%)8

on interval (0,r]. .
Then sequence {zn} (n > —1) generated by method (1.2) is well defined, remains
in U(zo,m0) for alln > —1 and converges to a solution z* of equation F(z)=0.
Moreover the following estimates hold for all n > —1

(3.12) |Zn+1 — Znll <t — tnya,
and

(3.13) lzn — 2*|| <ty
where

(3.14) tei=ro+7, to=ro,

(3.15) Yo = +30ro+ By, 71 =36r§ — 2yro — By +1,
and forn >0

Yotn — (tn — tn1)28 — 2012
Y1 + 2')’Otn - (tn - tn—~1)2 - 3,3t721

Furthermore if ro < ry, and

(3.16) tht1 = “tp.

(3.17) a2y +ro+m1) <1,
x* is the unique solution of equation (1.1) in U(zq,r1).

Proof. Sequence {t,} (n > —1) generated by (3.14) and (3.16) can be obtained if
method (1.2) is applied to the scalar polynomial

(3.18) F@t) = =Bt + vt + mt.

It is simple calculus to show sequence {t,} (n > —1) converges monotonically to
zero (decreasingly).
We can have:

_ 2(tk41 — tk)
(3.19) e e = Y — T

Fltes1)



ON A QUADRATICALLY CONVERGENT ITERATIVE METHOD 211

_ {[vo — (2tk + ter1) Btk — thr) + (b — te-1)*B}(tk — tis1)
1— B2 — 2(to — te1)e — [3(to — trt1)(Bto + tey1) — (tk — th+1)?]8
o (= te)a+ (o1 — )8
T 1-2(t0 — try1) — B2
We show (3.12) holds for all kK > —1. Using (3.3)-(3.8) and
Yoto — (to — t-1)%8 — 2613 __h{ro) _
i+ 2y0t0 — (fo—t-1)28 -3B8] © 1-267v2 ¢
we conclude that (3.12) holds for n = —1,0. Assume (3.12) holds for all n < k and
zi, € U(zo,m0). By (2.6) and (3.12) zx41 € U(zo,70). By (3.1), (3.2) and (3.12)
(3.22)
1451 (Ao — Ak )l = 145 (220 — 21, 2-1] — [0, T_1] + [0, z-1] — [0, Zo]
+[zo, o] — [%k-+1, To] + [Tkt1, To] — [Th41, Zk]
k41, k] — [22K41 — Tk, Tk
= |45 (([220 — 21,21, 20] — [20, -1, Zo]) (w0 — z_1)
+([zo, Zo] — [zk-+1, o)) + ([Zk+1, To] — [Tier1, Tk])
+([zkt1, k] — 22841 — Tk, 2k])) |
< 872+ (llzo — zrtall + llzo — zkll + 2k — Tesal)a
< By +2(to — trp1)a < 2873+ 20r < 1.

(3.20)

(tk — tht1)-

(3.21) to—t1= |1~

It follows by the Banach lemma on invertible operators and (3.22) that A,;{l exists,
so that

(3.23)  ||4gt, Aol <11 - By — (Izo — zhr1ll + llzo — ell + 2k — zha1lDe]
We can also obtain
145 ([zk+1, Tk) — ARl
= || Ay ([zk+1, Tk] — [k, 4]
+zk, k] — [k, TH—1]) + [Tky TH—1] — {228 — Th—1, TE—1]) ||
= |45 (([Zk+1, Tk) = |2k, Zk])
+([@k, Th—1, Tk] — [22k — Th—1, Th—1, Tk}) (Tk — Te—1)) |

< allzk = el + Bllze—1 — zel®.

(3.24)

Using (1.2), (3.23) and (2.24) we get

zet2 — Tirill = 1At F (@i )l = | Ay (F(zrg1) — Flax) — Ar(@rr — z2)]
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(3.25)

INA

4140l 1145 (a1, 26] = ARl - 1ok — Tea |
allze = ze1 ]| + Bllze-1 — el
~ 1= = o(llzo — z4all + 2o — 2kl + ok — zsal)
< 100t = ter) + Btk-1 — 1)) (tk — tesr)
- 1—Bv2 —2(tp — tgy1)
which together with (3.11) completes the induction.

lzk — Trt1]|

Litgy1 — teya,

It follows from (3.12) that sequence {z,} (n > —1) is Cauchy in a Banach space
X and as such it converges to some z* € U(zq, 7o) (since U(zp, o) is a closed set).
By letting k£ — oo in (3.25) we obtain F(z*) = 0.

Finally to show uniqueness, define operator

(3.26) By = [y*, z*]

where y* is a solution of equation (1.1) in U(zg,1). We can have
(3.27)
145" (Ao = Bo)ll < aflly* — (220 — 21)|| + l|=* — @—1]l]
alll(y* = zo) = (w0 — z-1]| + [I(=* — o) + (o — z-1)ll]
< oflly" = zoll + 2]|lz0 — z—1[l + |l=* — zoll]

<al2vy+rg+r) <l

It follows from the Banach lemma on invertible operators and (3.27) that linear

IA

operator B is invertible.
We deduce from (3.26) and the identity

F(z*) = F(y*) = Bo(z" - y*) (3.28)
that
(3.29) =¥ =y*.
The proof of Theorem 3.1 is now complete. O

Remark 3.2. (a) It follows from (3.12), (3.13), (3.20) and (3.25) that the order of

convergence of scalar sequence {t,} and iteration {z,} is quadratic.
(b) The conclusions of Theorem 3.1 hold in a weaker setting. Indeed assume:

(3.30) 145 ([z0, zo] — [z, o))l < aollz — zoll,
(3.31) 145 ([, z0] — [z, )| < cully — zoll,

(3.32) 145 ([y, 2] - 2y — 2, 2])|| < eolly -z},
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(3.33) 145 ([y, =] — [z, 2))|| < aslly — 2|,

(3.34) 145 (220 — -1, %0) — [z, y])| < cu(l|220 — z—1 — =[| + [lzo — yll)
and

(3.35) | A5 ([2m0 — -1, 21, 20] — [£0, -1, 20))|| < Bollzo — 21

for all x,y € Dy.
It follows from (3.1), (3.2) and (3.30)—(3.35) that

(3.36) o; <2, i=1,2,3,4
and
(3.37) Bo < B.

For the derivation of: (3.23), we can use (3.30)-(3.32) and (3.32) instead of (3.1)
and (3.2), respectively; (3.24), we can use (3.33) instead of (3.1); (3.27), we can
use (3.25) instead of (3.1). The resulting majorizing sequence call it {s,} is also
converging to zero and is finer than {¢,} because of (3.36) and (3.37).

Therefore if (2.7), (3.30)—(3.35) are used in Theorem 3.1 instead of (3.1) we draw
the same conclusions but with weaker conditions, and corresponding error bounds

are such that:

(3.38) [Zn+1 — Znll < sn = sn41 S tag1 — ta
and

(3.39) |z — 2| < sp <tn

for all n > 0.

(c) Condition (3.2) can be replaced by the stronger (not really needed in the
proof) but more popular,

(3.40) 145" (v, 2, 9] = [w, 2, yDIl < Bullu — vl

for all v,u,z,y € Dy.
(d) As already noted at the end of Remark 2.2, conditions (2.7) and (3.10) can
be replaced by

(3.41) Uy = U(zo, Ro) € Do with Ry = 3rg

provided that z_, € Us.
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Indeed if &y 1.0n € Up (n > 0) then
122n — xn-1]] € 2||zn — @0l + lxn-1 — 0|l < 3ro.
That is 2z, — zp—1 € Uz (n > 0).
We can also provide a posteriori estimates for method (1.2):

Proposition 3.3. Assume hypotheses of Theorem 3.1 hold. Define scalar sequences
{pn} and {gn} for alln > 1 by

(342) Pn = O‘Hxn—l - In“2 + B“mn—l - mn—2“2uxn~l - xn“
and
(3.43) gn = 1 — 2a||za — 20|l + 8.

Then the following error bounds hold for alln > 1:

(3.44) lzn — 2*|| < €n < tn,y
where,
(3.45) en = 2{gn + (¢ — 40apn)?} 'pn.

Proof. As in (3.22) we can have in turn:

1452 (Ao — [zn, 2D = 145" (Ao — [0, o] + [0, o] — [zn, z*])ll
< BY? + allzo — znll + [lzo — =)
< By + o(2tg — tn)
< B2 +2arg < 1.

(3.46)

It follows from (3.42) and the Banach lemma on invertible operators that linear

operator [zn,z*] is invertible, with

(3.47) 1[zn, 2*] " Aoll < (g — allen — " )7
Using (1.2) we obtain the approximation:

(3.48) Tn — 2* = ([Tn, 2] 1 A0) (Ag L F(zn)).

By (3.24), (3.47) and (3.48) we obtain the left-hand side estimate of (3.44).
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Moreover we can have in turn:

(3.49)
* Dn a(tn—l - tn)2 + ,B(tn—l - tn)(tn—~1 — tn—2)2
lzn — z*|| < < 5
@n — aflzn — z*|| 1 - 872 = 2a(ty — tn) — aty
{[70 - :6(2tn—-1 + tn)](tn—l - tn) + ﬂ(tn—Z - tn—1)2}(tn~1 - tn)
T 1872~ 2a(to — ty) ~ aty — (3ro +7)(to — tn)B — Bt2 — Bro
—Bt + at2 +m
< 5 = t,.
"ﬂrn +at, +m
That completes the proof of Proposition 3.3. |

A simple numerical example follows to show:

(a) how to choose divided difference in method (1.2);
(b) method (1.2) is faster than the Secant method

(3.50) Tnyl = Tp — [xnamn—l]_lF(xn) (n>0)
(c) method (1.2) can be as fast as Newton’s method
(3.51) Tnt1 = Tn — F'(zp) 1 F(zy) (n>0).

Note that the analytical representation of F'(z,) may be complicated which makes
the use of method (1.2) very attractive.

Example 3.4. Let X =Y = R, and define function F on Dy = D = (.4,1.5) by
(3.52) F()=z% - 62 +5.

Moreover define divided difference of order one appearing in method (1.2) by

F(2y—-x)—~F(a¢).

3.53 2y —x, x| =
(3.53) 2y 0] = =
In this case method (1.2) becomes
2 -5
.54 n =T ’
(3:54) Tntl 2(zn — 3)

and coincides with Newton’s method (3.51) applied to F. Furthermore Secant
method (3.50) becomes:

Tp_1Zn — 5

3.55 _ Tn1%n 5

( ) Tn+1 Tt zn—6

Choose z..;1 = .6 and zg = .7. Then we obtain:
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n | Method (1.2) | Secant method (3.55)
1].980434783 96875

2 | .999905228 997835498

3 | .999999998 99998323

411=z* 999999991

5| — 1

We conclude this section with an example involving a nonlinear integral equation:

Example 3.5. Let H(z,t,z(t)) be a continuous function of its arguments which is
sufficiently many times differentiable with respect to «. It can easily be seen that if
operator F in (1.2) is given by

1
(3.56) F(z(s)) = z(s) — /0 H(s,t,z(t))dt,

then divided difference of order one appearing in (1.2) can be defined as

 H(s,1,22,(t) = Ta-1(t)) = H(s, 1, Tn-1(2))
(3.57) hn(s,t) = 2(za(t) = Tn-1(t)) ’

provided that if for ¢ = t,, we get zn(t) = zn-1(t), then the above function equals
H.(3,tm, Tn(tm)). Note that this way hn(s,t) is continuous for all ¢ € [0,1].

4. MONOTONE CONVERGENCE OF METHOD (1.2)

We refer the reader to [8], [14], [16], [21] for the concepts concerning partially
ordered topological spaces (POTL-spaces).

The monotone convergence of method (1.2) is examined in the next result.

Theorem 4.1. Let F be a nonlinear operator defined on an open subset of a regular
POTL-space X with values in a POTL-space Y . Let o, Yo, y—1 be points of D such
that:

(4.1) zo < yo < y-1, Do = (zo,y-1) €D, F(zo) <0< F(yo)

Moreover assume: there ezists a divided difference [-,-]: D — L(X,Y’) such that for
all (z,y) € D} withz <y

and

(4.3) F(y) - F(z) < [&,2y — z}(y — 2)-
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Furthermore, assume that for any (z,y) € D} with z < y, and (z,2y — z) € D3 the
linear operator [z, 2y—x] has a continuous non-singular, non-negative left subinverse.

Then there ezist two sequences {zn} (n > 1), {yn} (n > 1), and two points x*,
y* of X such that for alln > 0:

(4.4) F(yn) + [Yn—1,2yn ~ Yn-1](yn+1 — yn) =0,
(4.5) F(zn) + [Yn-1,2Un — Yn-1)(Tn+1 — ) =0,
(4.6) F(zn) <0< F(yn),
(4.7) o<1 < ST STt SYnk1 SYn S0 S 1 S o,
(4.8) lim z, =z* lim y, =y
n—oo n—00

Finally, if linear operators Ap = [Yn—1,2Yn — Yn—1] are inverse non-negative, then
any solution of the equation F(x) = 0 from the interval Dy belongs to the interval
(z*,y*) (e, zo v <y and F(v) =0 imply z* < v < y*).

Proof. Let Ay be a continuous non-singular, non-negative left subinverse of Ag.
Define the operator Q: (0, yo — o) — X by

Q(z) = z — Ao[F(z0) + Ao(x)]-
It is easy to see that @ is isotone and continuous. We also have:
Q(0) = —AoF(w0) 2 0,
Q(yo — o) = yo — o — Ao(F(y0)) + Ao(F (yo) — F(z0) — Ao(yo — o))
< yo — 0 — Ao(F(y0)) < yo — o

According to Kantorovich’s theorem on POTL-spaces [4], {12], [20] for fixed points,
operator Q has a fixed point w € {0,yo — xo). Set ; = ¢ + w. Then we get

(4.9) F(zo) + Aoy — o) =0, z0 <21 < 90.
By (4.3) and (4.9) we deduce:
F(z,) = F(z1) — F(z0) + Ao(zo — z1) < 0.

Consider the operator H: (0,yo — 1) — X given by
H(z) = x + Ao(F(yo0) — Ao(z)).
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Operator H is clearly continuous, isotone and we have:
H(0) = AoF (y0) > 0,
H(yo — 21) = yo — 71 + AcF(z1) + Ao[F(y0) — F(z1) — Ao(yo — 21)]
< yo - 21+ AoF(z1) < yo — 71

By Kantorovich’s theorem there exists a point z € (0,y0 — z1) such that H(z) = z.
Set y; = yo — z to obtain

(4.10) F(yo) + Ao(y1 —%0) =0, z1 <21 < 9o

Using (4.3), (4.10) we get:

F(y1) = F(y1) — F(yo) — Ao(y1 — %0) = 0.

Proceeding by induction we can show that there exist two sequences {z,} (n > 1),
{yn} (n > 1) satisfying (4.4)-(4.7) in a regular space X, and as such they converge
to points z*,y* € X respectively. We obviously have z* < y*. If o < u < yp and

F(u) = 0, then we can write

Ao(y1 — u) = Ao(yo) — F(yo) — Ao(u) = Ao(yo — u) — (F(yo) — F(u)) 20
and

Ao(z1 — u) = Ao(zo) — F(0) — Ao(u) = Ao(zo — u) — (F(z0) — F(u)) < 0.

If the operator Ay is inverse non-negative then it follows that z1 < v < y;. Pro-
ceeding by induction we deduce that z, < u < yn holds for all n > 0. Hence we
conclude
¥ <u<y’.
That completes the proof of Theorem 4.1. a

In what follows we give some natural conditions under which the points z* and
y* are solutions of equation F(z) = 0.

Proposition 4.2. Under the hypotheses of Theorem 4.1, assume that F is contin-
uous at * and y* if one of the following conditions is satisfied:
(a) =* =y";
(b) X is normal, and there ezists an operator T: X — Y (T(0) = 0) which
has an isotone inverse continuous at the origin and such that A, < T for

sufficiently large n;
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(c) Y is normal and there exists an operator Q: X — Y (Q(0) = 0) continuous
at the origin and such that A, < Q for sufficiently large n;
(d) operators A, (n > 0) are equicontinuous.

Then we deduce

(4.11) F(z*)=F(@y*)=0.

Proof. (a) Using the continuity of ' and (4.6) we get
F(z*) <0 < F(y).
Hence, we conclude
F(z*)=0.
(b) Using (4.4)—(4.7) we get
0> F(mn) = An(mn - mn-H) 2 T(mn - fl'n—{—l)»
0< F(yn) = An(yn - yn+1) < T(yn - yn+1)~
Therefore, it follows:
02 T_IF(CCH) 2 Tp— Tnt1, 0 T_lF(yn) < Yn — Yn+1-
By the normality of X, and
im (zn, — Zp+1) = Hm (yn — Ynt1) =0,
n—eo n—o0
we get lim, oo T~ F(z,)) = lim T7Y(F(yn)) = 0. Using the continuity of F we
n—ooo
obtain (4.11).
(¢) As before for sufficiently large n
02> F(zn) Z Q(xn — Tpy1), 0L F(yn) < Q(yn ~ Yn41)-

By the normality of Y and the continuity of F and @ we obtain (4.11).

(d) It follows from the equicontinuity of operator A, that nlerolo Anvn, = 0 whenever
lim v, = 0. Therefore, we get lim Ap(zp, — Tny1) = lim Ap(yn — yn+1) = 0. By
n—00 n-3>00 n—oo

(4.4), (4.5), and the continuity of F at z* and y* we obtain (4.11).
That completes the proof of Proposition 4.2. O

Remark 4.3. Hypotheses of Theorem 4.1 can be weakened along the lines of
Remarks 2.2, and 3.2 above and the works in [18, pp. 102-105], (8], [16] on the
monotone convergence of Newton-like methods. However, we leave the details to
the motivated reader.
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Remark 4.4. We finally note that (1.2) is a special case of the class of methods of
the form:

(4.12) Tl = Tn — [(1 4 An)Zn — AnZn_1,Tn 1] F(z) (n>0)
where A, are real numbers depending on z,-; and z,, i.e.,

(4.13) Ao = M&n_1,2,) (n>0), A: X2 R,

and are chosen so that in practice, e.g.,

(4.14) forall z,y € D = (1 4+ A(z,y))y — A(z,y)x € D.

Note that setting A(z,y) =1 for all z,y € D in (4.12) we obtain (1.2).
Using (4.12) instead of (1.2) all the results obtained here can immediately be
reproduced in this more general setting.
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