EXISTENCE OF FUZZY IDEALS WITH ADDITIONAL CONDITIONS IN BCK/BCI-ALGEBRAS

Young Bae Jun a and Chul Hwan Park b,*

ABSTRACT. We give an answer to the following question:

Question. Let S be a subset of [0,1] containing a maximal element m>0 and let $C:=\{I_t\mid t\in S\}$ be a decreasing chain of ideals of a BCK/BCI-algebra X. Then does there exists a fuzzy ideal μ of X such that $\mu(X)=S$ and $C_\mu=C$?

1. Introduction

The study of BCK-algebras was initiated by Iséki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. Also, Iséki introduced the notion of BCI-algebras which is a generalization of BCK-algebras. Since then a great deal of literature has been produced on the theory of BCK/BCI-algebras, in particular, emphasis seems to have been put on the ideal theory of BCK/BCI-algebras. For the general development of BCK/BCI-algebras the ideal theory plays an important role. Zadeh introduced the notion of fuzzy sets. At present this concept has been applied to many mathematical branches. In 1991, Xi [9] applied the fuzzy set to BCK-algebras, and he introduced the notion of fuzzy ideals, which has an important role for improving the theory of BCK/BCI-algebras. Since then a great deal of literature has been produced on the theory of fuzzy ideals of BCK/BCI-algebras (see [1, 2, 3, 4, 5, 6, 8]). In this paper, we discuss the existence of fuzzy ideals with additional conditions in BCK/BCI-algebras.

2. Preliminaries

Throughout the paper, a partially ordered set, poset, (P, \leq) , is a nonempty set P endowed with a reflexive anti-symmetric and transitive relation \leq . A poset is often

Received by the editors March 17, 2007 and, in revised form, July 16, 2007.

^{*} Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25, 08A72.

Key words and phrases. (anti) isotone map, (fuzzy) ideal.

denoted by the underlying set P only. If more than one poset is considered, we denote all (generally different) order relations by the same symbol \leq . If (P, \leq) and (Q, \leq) are two posets, then the map $f: P \to Q$ is said to be *isotone* if it preserves the order, i.e., if for any $p, q \in P$

(2.1)
$$p \le q \text{ implies } f(p) \le f(q).$$

The map $f: P \to Q$ is said to be *anti-isotone* if

(2.2)
$$p \le q \text{ implies } f(q) \le f(p).$$

 (P, \leq) and (Q, \leq) are said to be *isomorphic* if there is a bijection $f: P \to Q$ such that f and f^{-1} are isotone. If f is a bijection and f and f^{-1} are anti-isotone, then P and Q are said to be *anti-isomorphic*.

An algebra (X; *, 0) of type (2, 0) is called a *BCI-algebra* if it satisfies the following conditions:

(I)
$$(\forall x, y, z \in X)$$
 $(((x * y) * (x * z)) * (z * y) = 0),$

- (II) $(\forall x, y \in X) ((x * (x * y)) * y = 0),$
- (III) $(\forall x \in X) (x * x = 0),$
- (IV) $(\forall x, y \in X) (x * y = 0, y * x = 0 \Rightarrow x = y).$

If a BCI-algebra X satisfies the following identity:

(V)
$$(\forall x \in X) (0 * x = 0),$$

then X is called a BCK-algebra. If we define a relation \leq on a BCK/BCI-algebra X by

$$(2.3) x \le y \text{ if and only if } x * y = 0,$$

then (X, \leq) is a poset. A nonempty subset I of a BCK/BCI-algebra X is called an *ideal* of X if it satisfies:

- (i) $0 \in I$,
- (ii) $(\forall x \in X) \ (\forall y \in I) \ (x * y \in I \Rightarrow x \in I)$.

3. Existence of Fuzzy Ideals

For any fuzzy set μ in a set X, the range (also called image) of μ , denoted by $\mu(X)$, is the set

(3.1)
$$\mu(X) = {\{\mu(x) : x \in X\}}.$$

The level sets of the fuzzy set μ are denoted by μ_t , $t \in [0,1]$, and are given by

(3.2)
$$\mu_t = \{x \in X : \mu(x) \ge t\} = \mu^{-1}[t, 1].$$

The collection of all level sets corresponding to the range $\mu(X)$ of μ is denoted by C_{μ} and is given by

(3.3)
$$C_{\mu} := \{ \mu_t : t \in \mu(X) \}.$$

We have the following question:

Question. Let S be a subset of [0,1] containing a maximal element m > 0 and let $C := \{I_t \mid t \in S\}$ be a decreasing chain of ideals of a BCK/BCI-algebra X. Then does there exist a fuzzy ideal μ of X such that $\mu(X) = S$ and $C_{\mu} = C$?

We will give an answer to the above question in this article.

Definition 3.1 ([9]). A fuzzy set μ in a BCK/BCI-algebra X is called a fuzzy ideal of X if it satisfies

- (F0) $\mu(0) \ge \mu(x)$ for all $x \in X$.
- (F1) $\mu(x) \ge \min\{\mu(x*y), \mu(y)\}\$ for all $x, y \in X$.

In what follows let X be a BCK/BCI-algebra unless otherwise specified, and denote by FI(X) the set of all fuzzy ideals of X, that is,

(3.4)
$$FI(X) := \{ \text{Fuzzy ideals of } X \}.$$

Lemma 3.2 ([9]). Let μ be a fuzzy set in X. Then $\mu \in FI(X)$ if and only if for every $t \in [0, \mu(0)]$, the level set μ_t is an ideal of X, which is called a level ideal.

Note that the collection C_{μ} of level ideals corresponding to the range $\mu(X)$ of the fuzzy ideal μ is a chain of ideals in the sense that it is totally ordered by inclusion.

Example 3.3. Let $X = \{0, a, b, c, d\}$ be a BCK-algebra in which the operation * is defined by the following table:

Let μ be a fuzzy set in X given by

(3.5)
$$\mu = \begin{pmatrix} 0 & a & b & c & d \\ 0.7 & 0.5 & 0.4 & 0.3 & 0.3 \end{pmatrix}.$$

Then $\mu \in FI(X)$, $\mu(X) = \{0.7, 0.5, 0.4, 0.3\}$ and

$$C_{\mu} = \{\mu_{0.7}, \mu_{0.5}, \mu_{0.4}, \mu_{0.3}\},\$$

which is a chain because $\mu_{0.7} \subseteq \mu_{0.5} \subseteq \mu_{0.4} \subseteq \mu_{0.3}$.

Theorem 3.4. Let $\mu \in FI(X)$. Then (C_{μ}, \subseteq) and $(\mu(X), \leq)$ are anti-isomorphic.

Proof. Define a map $f: \mu(X) \to C_{\mu}$ by $f(t) = \mu_t$ for all $t \in \mu(X)$. Obviously f is a bijection, and f and f^{-1} are anti-isotone. Hence we have the desired result.

Let $\mu \in FI(X)$. Since $\mu(0) \ge \mu(x)$ for all $x \in X$, we have

$$(3.6) \qquad \bigcap_{t \in \mu(X)} \mu_t = \mu_{\mu(0)} \in C_{\mu}.$$

Note that $X \in C_{\mu}$ if and only if $\inf(\mu(X)) \in \mu(X)$, in this case we obtain

(3.7)
$$X = \bigcup_{t \in \mu(X)} \mu_t = \mu_{\inf(\mu(X))} \in C_{\mu}.$$

Lemma 3.5. For any $\mu \in FI(X)$ and $t \in \mu(X)$, we have

$$(3.8) \qquad \bigcup_{s \in (t,1) \cap \mu(X)} \mu_s \subsetneq \mu_t.$$

Proof. Clearly, we have

$$(3.9) \qquad \bigcup_{s \in (t,1] \cap \mu(X)} \mu_s \subseteq \mu_t.$$

Since $t \in \mu(X)$ and $\mu_t = \mu^{-1}[t, 1]$, there exists $x \in \mu_t$ such that $\mu(x) = t$. If $s \in (t, 1]$, then obviously $x \notin \mu_s = \mu^{-1}[s, 1]$. Hence (3.8) is valid.

The following example shows that there exist a BCK-algebra with a decreasing chain of ideals (indexed by subsets of [0,1]) not satisfying the equality in (3.8).

Example 3.6. Let $X = \{0, a, b, c, d\}$ be a BCK-algebra in which the operation * is defined by the following table:

Let μ be a fuzzy set in X given by

(3.10)
$$\mu = \begin{pmatrix} 0 & a & b & c & d \\ 0.9 & 0.7 & 0.6 & 0.5 & 0.3 \end{pmatrix}.$$

Then $\mu \in FI(X)$, $\mu(X) = \{0.9, 0.7, 0.6, 0.5, 0.3\}$ and

$$C_{\mu} = \{\mu_{0.9}, \mu_{0.7}, \mu_{0.6}, \mu_{0.5}, \mu_{0.3}\},\$$

which is a decreasing chain. For $t = 0.5 \in \mu(X)$, we have

$$\bigcup_{s \in (t,1] \cap \mu(X)} \mu_s = \mu_{0.9} \cup \mu_{0.7} \cup \mu_{0.6} = \{0, a, b\} \neq \{0, a, b, c\} = \mu_t.$$

Lemma 3.7. Let S be a subset of [0,1] containing a maximal element m > 0 and let $C := \{I_t \mid t \in S\}$ be a decreasing chain of ideals of X. For any $\mu \in FI(X)$ such that $\mu(X) = S$ and $C_{\mu} = C$, we have

(3.11)
$$\bigcup_{r \in (t,1] \cap S} \mu_r = \bigcup_{r \in (s,1] \cap S} I_r$$

whenever $\mu_t = I_s$ for some $t, s \in S$, and

(3.12)
$$\{\mu^{-1}(t) \mid t \in S\} = \left\{ I_k \setminus \bigcup_{r \in (k,1] \cap S} I_r \mid k \in S \right\}.$$

Proof. Assume that $\mu_t = I_s$ for some $t, s \in S$. Note that $C_{\mu} = C$ and they are decreasing chains, and so we must have $\mu_m = I_m$. Since $\mu_t = I_s$ for some $t, s \in S$, it follows that either t = s = m or t, s < m. If t = s = m, then

$$\{\mu_r \mid r \in (t,1] \cap S\} = \emptyset = \{I_r \mid r \in (s,1] \cap S\}$$

and thus (3.11) is valid. Now we assume that $\mu_t = I_s$ for some $t, s \in S \setminus \{m\}$. Then

$$\{\mu_r \mid r \in (t, 1] \cap S\} = \{\mu_r \mid r \in S, \mu_r \subsetneq \mu_t\}$$

$$= \{I_r \mid r \in S, I_r \subsetneq I_s\}$$

$$= \{I_r \mid r \in (s, 1] \cap S\},$$

which induces (3.11). Since $C_{\mu} = C$, for every $t \in S$ there exists $k \in S$ such that $\mu_t = I_k$. It follows from (3.11) that

$$\bigcup_{r \in (t,1] \cap S} \mu_r = \bigcup_{r \in (k,1] \cap S} I_r$$

so that

$$\mu^{-1}(t) = \mu_t \setminus \bigcup_{r \in (t,1] \cap S} \mu_r = I_k \setminus \bigcup_{r \in (k,1] \cap S} I_r.$$

Hence

$$\{\mu^{-1}(t) \mid t \in S\} \subseteq \left\{ I_k \setminus \bigcup_{r \in (k,1] \cap S} I_r \mid k \in S \right\}.$$

Similarly we prove that for every $k \in S$, there exists $t \in S$ such that

$$I_k \setminus \bigcup_{r \in (k,1] \cap S} I_r = \mu^{-1}(t).$$

Hence

(3.14)
$$\left\{ I_k \setminus \bigcup_{r \in (k,1] \cap S} I_r \mid k \in S \right\} \subseteq \{\mu^{-1}(t) \mid t \in S\}.$$

Combining (3.13) and (3.14) induces (3.12).

Theorem 3.8. Let S be a subset of [0,1] containing a maximal element m>0 and let $C:=\{I_t\mid t\in S\}$ be a decreasing chain of ideals of X. Then there exists $\mu\in FI(X)$ satisfying $\mu(X)=S$ and $C_\mu=C$ if and only if the following conditions holds:

(1) For every $t \in S$,

$$(3.15) \qquad \bigcup_{r \in (t,1] \cap S} I_r \subsetneq I_t.$$

(2) The BCK/BCI-algebra X is the disjoint union

$$(3.16) X = \bigcup_{t \in S} \left(I_t \setminus \bigcup_{r \in (t, 1) \cap S} I_r \right).$$

Proof. Let $t \in S$ be fixed and suppose that there exists $\mu \in FI(X)$ satisfying $\mu(X) = S$ and $C_{\mu} = C$. Then there exists $s_t \in S$ such that $I_t = \mu_{s_t}$. By Lemma 3.5, we have

$$(3.17) \qquad \bigcup_{r \in (t,1] \cap S} \mu_r \subsetneq \mu_t,$$

and so

(3.18)
$$\bigcup_{r \in (t,1] \cap S} I_r = \bigcup_{r \in (s_t,1] \cap S} \mu_r \subsetneq \mu_{s_t} = I_t$$

by (3.11). This proves (3.15). Since $\mu(X) = S$ and $C_{\mu} = C$, it follows from (3.12) that

(3.19)
$$X = \bigcup_{t \in S} \mu^{-1}(t) = \bigcup_{t \in S} \left(I_t \setminus \bigcup_{r \in (t,1] \cap S} I_r \right).$$

Thus (3.16) is valid. Conversely assume that (3.15) and (3.16) are true. Note that

$$(3.20) I_m \setminus \bigcup_{r \in (m,1) \cap S} I_r = I_m \setminus \emptyset = I_m = \bigcap_{t \in S} I_t.$$

Let $s \in S$ be fixed. Since C is a decreasing chain, we have

(3.21)
$$\bigcup_{t \in [s,1] \cap S} \left(I_t \setminus \bigcup_{r \in (t,1] \cap S} I_r \right) \subseteq I_s.$$

Now let $x \in I_s$. Then there exists $t \in S$ such that $x \in I_t \setminus \bigcup_{r \in (t,1] \cap S} I_r$. Since $x \in I_s$ and C is a decreasing chain, it follows that $t \in [s,1] \cap S$ so that

$$(3.22) x \in I_t \setminus \bigcup_{r \in (t,1] \cap S} I_r \subseteq \bigcup_{t \in [s,1] \cap S} \left(I_t \setminus \bigcup_{r \in (t,1] \cap S} I_r \right).$$

Hence

(3.23)
$$\bigcup_{t \in [s,1] \cap S} \left(I_t \setminus \bigcup_{r \in (t,1] \cap S} I_r \right) = I_s.$$

Let $\mu: X \to [0,1]$ be defined by $\mu(x) = t$ if $x \in I_t \setminus I_t^*$, $t \in S$, where $I_t^* = \bigcup_{r \in (t,1] \cap S} I_r$. Since the union in (3.16) is a disjoint union, it follows that μ is well defined on X. Given $t \in S$, the set $I_t \setminus I_t^*$ is nonempty by (3.15). Thus $t \in \mu(X)$, and so $\mu(X) = S$. Now for every $s \in S$, we obtain

(3.24)
$$\mu_s = \mu^{-1}[s,1] = \bigcup_{t \in [s,1] \cap S} \mu^{-1}(t)$$
$$= \bigcup_{t \in [s,1] \cap S} \left(I_t \setminus \bigcup_{r \in (t,1] \cap S} I_r \right) = I_s$$

by (3.23). It follows that $C_{\mu} = C$. Finally we prove that μ is a fuzzy ideal of X. Since $0 \in I_m$, we have $\mu(0) = m \ge \mu(x)$ for all $x \in X$. Let $x, y \in X$ be such that $\mu(x * y) = t_1$ and $\mu(y) = t_2$ for $t_1, t_2 \in S$. We may assume that $t_1 \le t_2$ without loss of generality. Then $x * y \in I_{t_1} \setminus I_{t_1}^*$ and $y \in I_{t_2} \setminus I_{t_2}^*$. Since $I_{t_2} \subseteq I_{t_1}$ and I_{t_1} is an ideal, it follows that $x \in I_{t_1} \setminus I_{t_1}^*$ so that

$$\mu(x)=t_1=\min\{\mu(x*y),\mu(y)\}.$$

Hence μ is a fuzzy ideal of X.

REFERENCES

- 1. Y. B. Jun: Fuzzy sub-implicative ideals of BCI-algebras. Bull. Korean Math. Soc. 39 (2002), no. 2, 185–198.
- 2. Y. B. Jun: Characterizations of Noetherian BCK-algerbas via fuzzy ideals. Fuzzy Sets and Systems 108 (1999), 231–234.
- 3. Y. B. Jun & J. Meng: Fuzzy commutative ideals in BCI-algebras. Commun. Korean Math. Soc. 9 (1994), no. 1, 19-25.
- 4. Y. B. Jun & S. Z. Song: Fuzzy set theory applied to implicative ideals in BCK-algebras. *Bull. Korean Math. Soc.* **43** (2006), no. 3, 461–470.
- Y. B. Jun & E. H. Roh: Fuzzy commutative ideals of BCK-algerbas. Fuzzy Sets and Systems 64 (1994), 401–405.
- Y. B. Jun & X. L. Xin: Involutory and invertible fuzzy BCK-algerbas. Fuzzy Sets and Systems 117 (2004), 463–469.
- 7. J. Meng & Y. B. Jun: BCK-algebras. Kyungmoonsa Co. Seoul, Korea (1994).
- 8. J. Meng, Y. B. Jun & H. S. Kim: Fuzzy implicative ideals of BCK-algebras. Fuzzy Sets and Systems 89 (1997), 243–248.
- 9. O. G. Xi: Fuzzy BCK-algebra. Math. Japonica (presently, Sci. Math. Jpn.) 36 (1991), no. 5, 935-942.
- 10. L. A. Zadeh: Fuzzy sets. Inform. and Control 8 (1965), 338-353.

^aDepartment of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Korea

Email address: skywine@gmail.com

^bDEPARTMENT OF MATHEMATICS, UNIVERSITY OF ULSAN, ULSAN 680-749, KOREA *Email address*: chpark@ulsan.ac.kr