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MINIMUM PERMANENT ON A FACE OF (4
CONTAINING TWO SQUARE ZERO-SUBMATRICES

SANG-HUN SoNG ?, HANG KYUN SHINP AND SEOK-ZUN SONG ©

ABSTRACT. In this paper, when n = 6, we will determine the minimum permanent
and minimizing matrices on the face of Q, which contains exactly two square zero-
submatrices.

1. INTRODUCTION

Let ©Q,, be the convex polytope of all n-square doubly stochastic matrices, that
is, real nonnegative n-square matrices whose row and column sums are all equal to
1. For an n x n matrix A = [a;;], the permanent of A, written perA, is defined by

(11) perd = Z A15(1) " Ano(n)
o€Sn
where S,, stands for the symmetric group on the set {1,2,---,n}. Forann xn
(0, 1)-matrix C = [c;5], let
(1.2) ]'-(C) = {X = [.731]] € in Tij = 0 whenever Cij = 0}

Then F(C) forms a face of 2, and since it is compact, F(C) contains a minimizing
matrix A such that per4A < perX for all X € F(C).

Egorycev [2] and Falikman [3] proved the van der Waerden permanent conjecture:
If A € Q,, then there exists the unique minimizing matrix J, on {2, such that

perA > perJy,,

where J, is an n-square matrix all of whose entries are % After these results,

many mathematicians have solved problems determining minimum permanents in
various faces of Q,. Knopp and Sinkhorn [7] determined the minimum permanent
in a face of €, with one prescribed zero. This result was extended by Friedland
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[4] to faces in which prescribed zeros form a submatrix. More generally, Hwang
[5] determined the minimum permanents in faces of {2, that are determined by
a staircase matrix. Similarly, Lee [8, 9, 10] investigated the minimum permanent
and minimizing matrices on the face of {2, which contains exactly two square zero-
submatrices. In particular, he proposed a conjecture: A minimizing matrix on the
face of €1, which contains exactly two square zero-submatrices has all diagonal block
zero-submatrices, and he showed that the conjecture is true for n = 5. But Choi [1]
showed that the conjecture is not true for n = 6.

In this paper, when n = 6, we will determine the minimum permanent and
minimizing matrices on the face of Q, which contains exactly two square zero-

submatrices.

2. RESULTS

To prove the main result, we need some lemmas:

Lemma 2.1 ([11]). If A = la;] is a minimizing matriz, then anx > 0 implies
perA(h|k) = perA, where perA(hlk) is the submatriz obtained from A by deleting

row h and column k.

Let K be a set of n-square real matrices and let f be a real valued function on
K. A matrix A € K is called an f-minimizing matrix on K if f(A4) < f(X) for all
Xek.

Lemma 2.2 ([6, Row-column averaging lemma}). Let K be a compact convez set
of n X n real nonnegative matrices, and f be real valued function on K. Let A =
[a1,-+ ,an] be an f-minimizing matriz on K. Suppose, for some k (2 < k < n),
that

(i) a1, ,ax have the same (0,1) pattern,
(ii) for any k x k permutation matriz P,

B=AP &I, )€K, f(A)=f(B),

and f(tA+ (1 —t)B) is a polynomial in t of degree < 3.

Then A(Jy © I,_) is also a f-minimizing matriz on K.

Let D = [di;] be an n-square matrix such that



MINIMUM PERMANENT ON A FACE OF Qg 199
1<4,j<p

p+1<i,j<p+gq

elsewhere

0,
1,

where n < 2(p+q), 2p < n, 2g < n.

Theorem 2.3. Let g(8) = —363°+428*—178%+ 382, If D has the form as in (2.1)
and n = 6, then the minimum permanent on F(D) is g(8) where B, 3 < B < 3, is
a real oot of the equation —180a3 + 168a® — 51a + 5 = 0.

Proof. Since 6 < 2(p+ q), 2p < 6, and 2¢q < 6, we have p = ¢ = 2. By Lemma 2.2,
minimizing matrix X = [z;;] will have the form of the following,

) 0 b b 1—22b 1—221) 7
0 0 b b 1—22b 1—22b
1-2a 1-2a
x=| @ a 0 0 = ==
- a a 0 0 .:.l;g_a’_ l.__2_a
1-2¢ 1-2a 1-2b 1-2b 2a+2b—1 2a+%b—1
1—22a 122a 1—22b 122b 2a+22b~1 2a+gb—1
L 2 2 2 2 2 2 -

(Case 1) a,b # 3.

Therefore

(2.2)

We claim that a = b. Suppose that a # b. Since z46,%64 7 0, by Lemma 2.1,

2

perX(6|4) = perX(4/6) = perX. Thus

=== 7 1 2a%h(1 — 2b)(2a + 2b — 1) + 2ab(1 — 2b)(1 — 2a)?

b%(1 — 2a)?
2
a®(1 - 2b)3
2
Hence
(2.3)
So
(2.4)

1 1
O<a<= and O0<b< =.

2

(a + b)(24ab + 1) = 24a2b* 4 18ab.

Since a,b > 0 from (2.2), (a + b) > 2v/ab. Thus we have

(2.5)

Vab(24ab + 1) < 12a%b? + 9ab.

If a = 0, then b = 3 from column 6 of X, which is a

contradiction to the assumption. Thus a > 0 and b > 0 from similar method.

+ 2ab?(1 — 2a)(2a + 2b — 1) + 2ab(1 — 2a)(1 — 2b)?

(a — b)(24a%b® — (a + b) — 24ab(a + b) + 18ab) =0
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By taking ¢ = Vab,
(2.6) 1263 — 24 +9¢ -1 > 0.

Since 0 < ¢ < 3 from (2.2), consider

1
Flc) =12c3 — 242 +9¢ — 1, where 0 < ¢ < 3
To find supf(c), solving the equation

d

if 2
2.7 = = —4 =0,
(2.7) - = 36 & +9
we have \/_
447 4-V7
e= 227, supr(o) - 1(255),

which is the only maximum of f(c) between 0 < ¢ < % Then since we have
supf(c) < 0 this contradicts to (2.6). Thus we have a = b.
On the other hand,

5
perX = perX(6]4) = —36a° + 42a* — 170* + §a2,

and from the facts that 1——23‘5 > 0 and 3‘-’2;1 > 0, we have a € [%, %) Now, to find

the minimum of perX, let

11
g(a) := —36a® + 42a* — 17a® + gaz,where a€ [Z’ 5)

Then, solving the equation ;;‘% =0, i.e., —180a® + 168a% — 51a + 5 = 0, we have
infg(a) = 9(8),
where [ is a real root of the equation —180a3 + 168a% — 51a + 5 = 0.

(Case 2) a = % orb= % Suppose, without loss of generality, b = % Then the

minimizing matrix X have the following form:

[0 0 % % 0 0 ]
0 0 53 3 0 0
1-2¢ 1-2
x=1|° a 00 1—222 1322
a a 0 0 5 5
1-22a 1—-22(1 0 0 a a
_1"2204 1*—22(1. 0 0 a a i

So

1
perX = 12a* — 12a° + 5a% —a + 3

Let h(a) := perX = 12a* — 12a® + 502 —a + é,where a € [0, %) Then we have

infh(a) = min{h(O), h(i—)h(%)} = % > g(8).
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Hence, from (Case 1) and (Case 2), the minimum permanent of #(D) is g(3). O

Note that since § = 0.333..., we have g(8) = 0.185185.... Thus, the minimum

permanent on F(D) is 0.0185185.. ..

10.

11.
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