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ON 4-PERMUTING 4-DERIVATIONS IN PRIME AND
SEMIPRIME RINGS

Kyo00-HONG PARK

ABSTRACT. Let R be a 2-torsion free semiprime ring. Suppose that there exists a
4-permuting 4-derivation A : R x R x R x R — R such that the trace is centralizing
on R. Then the trace of A is commuting on R. In particular, if R is a 3!-torsion
free prime ring and A is nonzero under the same condition, then R is commutative.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, R will represent an associative ring, and Z will be its
center. Let x,y € R. The commutator yz —ry will be denoted by [y, z]. We will also
use the identities [xy, 2] = [x, 2]y + 2]y, 2] and [z, yz] = [z, y]z + y[z, z]. Then a map
[+ R — Ris said to be commuting (resp. centralizing) on R if [f(x),2] =0 (rcsp.
[f(z),z]) € Z) forallz € R. Amap A: Rx RXx Rx -+ x R — R will be said to be
n-permuting (n > 3) if the equation A(zy,xo,, - ,Zn) = A(Zr(1), Tr(2)s" " > Tr(n))
holds for all z;,z2,--- ,z, € R and for every permutation {7(1),7(2),--- .7(n)}.
Recall that R is semiprime if Rz = {0} implies x = 0 and R is prime if Ry = {0}
implies z =0 or y = 0.

An additive map d : R — R is called a derivation if the Leibniz rule d(zy) =
d(z)y + zd(y) bholds for all z,y € R.

- By a bi-derivation we mean a bi-additive map B : R x R — R (i.c., B is additive

in both arguments) which satisfies the relations

B(zy,z) = B(z, 2)y + zB(y, 2),
B(z,yz) = B(z,vy)z + yB(z, 2)
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for all z,y € R. Let B be symmetric, that is, B(z,y) = B(y,z) for all z,y € R.
The map 3 : R — R defined by 3(z) = B(z,z) for all z,y € R is called the trace
of B. If R is a noncommutative 2-torsion free prime ring and B: Rx R — Ris a
symmectric bi-derivation, then it follows from [1, Theorem 3.5] that B = 0.

A 3-additive map D : R x R x R — R (i.c., additive in cach argument) will be

called a 3-derivation if the relations
D(.’L‘l.Z'Q, Y, Z) = D(xla Y, Z).Z'Q + .’1)1D(-’L'2, Y, Z),
D(z,y1y2,2) = D(x,y1, 2)y2 + 1 D(x, 32, 2)
and
D(z,y, z122) = D(z,y, 21)22 + 21.D(x,y, 22)
arc fulfilled for all z,y, 2, z;, i, 2z; € R, i = 1,2. We obtained some results concerning
3-permuting 3-derivations of prime and semiprime rings in [2].

Here we introduce the following map:

A 4-additive map A: R x R x R x R — R (i.c., additive in cach argument) will
be called a 4-derivation if the rclations

A(.’El.’lfz, Y,z 'U)) = A(.’L‘l, Y, z, ’LU).’EQ + $1A($2, Y, z, 'LU),
A(:E, ny2 =z, w) = A(I, Y1, 2, w)y2 + ylA(iU’ Y2, z, ’l,U),
Az, y, z120,w) = Az, y, 21, w) 22 + 21A(2, Y, 22, W)
and
A((E, Y, z, ’U.)1'IU2) = A(‘T, Y, z,w )UJQ + ’U)lA(-T, Y, 2, ’11)2)
are fulfilled for all z,v, z,z;, y;, z;,w; € R, i = 1,2. If A is 4-permuting, then the
above four relations arc equivalent to each other.

For cxample, let R be commutative. A map A : R x R x R x R — R defined by
(z,y, z,w) — d(z)d(y)d(z)d(w) for all z,y,z,w € R is a 4-permuting 4-derivation,
where d is a derivation on R.

On the other hand, let

R:{(g g)’a,bGC},

where C is a complex field. It is clear that R is a noncommutative ring under matrix
addition and matrix multiplication. We define a map A: R x R x R x R — R by

ajl b1 as b2 as b3 a4 b4 0 aj1a2a3a4
0o o)\o o/))\o o))\o o))" o o )
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Then it is easy to see that A is a 4-permuting 4-derivation.

Let a map 4 : R — R defined by §(z) = A(z,z,z,x) for all z € R, where
A:RxRxRxR— Ris a4-permuting map, be the trace of A. It is obvious that,
in case when A : Rx R x Rx R — R is a 4-permuting map which is also 4-additive,
the trace & of A satisfies the relation

5(z +y) = 8(x) + 8(y) + 4A(z, 2,3, y) + 6A (2, 2,,y) + 4A(z, 3,3,9)
for all z,y € R. Since we have
A0,y,z,w) = A(0+0,y,z,w) = A0, y, z,w) + A(0,y, 2, w)
for all y,z,w € R, we obtain A(0,y,z,w) = 0 for all y,z,w € R. Hence we get
0=A(0,y,2z,w) = A(x — z,y, z,w) = Az, y, z,w) + A(~z,y, z,w)
and so we see that A(—z,y,z,w) = —A(x,y, z,w) for all z,y,z € R. This tells us
that § is an even function.

A study concerning the theory of centralizing (commuting) maps on prime rings
was initiated by the classical result of E. C. Posner [4] which states that the existence
of a nonzero centralizing derivation on a prime ring R implies that R is commutative.
Since then, a great deal of work in this context has been done by a number of authors
(sec, e.g., [1] and references therein). For example, as a study concerning centralizing
(commuting) maps, J. Vukman [5, 6] investigated symmetric bi-derivations on prime
and semiprime rings.

In this paper, we apply the results due to E. C. Posner [4] and J. Vukman [5] to
4-permuting 4-dcrivations, respectively.

2. THE MAIN RESULTS

We first need the following well-known lemma, [3].

Lemma 1. Let R be a prime ring. Let d : R — R be a derivation and a € R. If
ad(x) = 0 holds for all z € R, then we have either a =0 or d = 0.

We begin our investigation of 4-permuting 4-derivations with the next result.

Lemma 2. Let R be a noncommutative 3!-torsion free prime ring. Suppose that
there exists a 4-permuting 4-derivation A : R X R x R x R — R such that § is
commauting on R, where § is the trace of A. Then we have A = 0.
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Proof. Supposc that
(1) [6(z),z] =0 forall r € R.
The substitution 2 = = + y to lincarize (1) lcads to
0= [5(y), z] + 4[A(z, 2, 2,), 2] + 6[A(x, z,y,y), 7] + 4[A(2, Y, ¥, ), 2]
(2) +18(2), 4] + 4[A(z, 2, 2,9), 4] + 6]A(z, 2,9,9), 9] + 4[A (2,9, 9,), ]

for all z,y € R. Putting —z instcad of x in (2) and comparing (2) with the result,
we arrive at

()  [6(2),y] + 4[A(z, 2, 2,9), 2] + 6]A(z, 2,9,9),y] + 4[A(z, ¥, 9,9),2] = 0

for all z,y € R since 6 is even. We set y = z + y in (3) and then use (1) and (3) to
obtain

@) [6(2),9] + 4[A(z, 2, 2,9), 2] + 3[A(2, 2,9, y), 2] + 2(A(z, 7, 7,),y] = 0
for all z,y € R. Replacing z by —z in (4), we have
(5) 3[A(z, z,y,v), 2] + 2[A(z, z,2,y),y] =0 for all z € R.
We let y =z +y in (5) and then employ (1) and (5) to get
0= 2[b6(z),9] + 8[6(, z,7,y), 2] + 3[A(z, 2, 9,9), 2] + 2[A(z, 7, 2,1),1]
= 2[8(x), y] + 8[d(z, z, 2,y), 2]
which reduces to the equation
(6) 0= [6(x),y] +4[6(z,z,z,y),z] forall z,y € R.
Let us write in (6) zy instead of y. Then we get
0 = [§(x), zy] + 4|A(z, z, T, TY), 7]
= z[0(x), y] + 46(x)[y, x| + 4z[A(z, z, , y), 7]
= z{[8(z),y] + 4[A(z, z,7,), 2]} + 46(x)[y, 2]
which implics that
(7 o(z)ly,z] =0 forall z,yc R

on account of (6). From (7) and Lemma 2.1, we have §(z) =0 forallz € R (z ¢ Z)
since for every fixed x € R, a map y > [y, z] is a derivation on R.
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Now,let € R(zr € Z) andye R(y¢ Z). Theny +a ¢ Z and —y ¢ Z. Thus
we have

0=106(y+ ) =d(y) + &(z) + 4A(y, 9, ¥, ) + 6A(y,y, z, x) + 4A(y, 2, z, T)
= 0(z) + 4A(y,y,y,z) + 6A(y,y,,7) + 4A(y, T, T, x)
and
0=24(y —z) =d(y) + 6(z) — 4A(y,y,¥,7) + 6A(y,y,z, x) — 4A(y, z, x, )
= d(z) — 4A(y,y,y,z) + 6A(y,y,, ) — 4A(y, z, x, x)
which shows that
(8) 5(z) + 6A(z, z,y,y) = 0.
Replacing y € R(y ¢ Z) by 2y in (8) and using (8), we obtain that
18A(z,z,y,y) =0 = Az, z,9,y)

and so the rclation (8) gives 6(z) = 0 for all z € R (z € Z). Therefore we conclude
that §(z) =0 for all z € R.

On the other hand, since the relation
oz +y) =d(x) +6(y) + 4A(x, z,2,y) + 6A(z,z,u,y) + 4A(z, ¥, ¥, y)

is fulfilled for all z,y € R, it follows that
(9) 2A(z,x,x,y) + 3A(z, z,y,y) + 2A(2,y,y,y) =0 forall z,y € R
and putting = —x in (9) and utilizing (9) yield
(10) 3A(x,z,y,y) =0 = A(z,z,y,y) forall z,y € R.

Let us substitute y + w for y in (10) and then use (10). Then we obtain that
(11) 2A(z, z,y,w) =0 = A(z,z,y,w) forall z,y,w € R.
Finally, replacing z by  + z in (11) and applying (11), we gct‘

2A(z,y,2,w) = 0= A(z,y,2,w) forall z,y,z,w € R,

that is, A(z,y,z,w) = 0 for all z,y,2,w € R which completes the proof of the
theorem. a

We continue with the following result for 4-permuting 4-derivations on semiprime
rings.
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Theorem 1. Let R be a noncommutative 2-torsion free semiprime ring. Suppose
that there exists a 4-permuting 4-derivation A : R x R x R x R — R such that § is
centralizing on R, where § is the trace of A. Then § is commuting on R.

Proof. Assume that

(12) [6(x),z] € Z forall z € R.

By linearizing (12) and again using (12), we obtain

(13)  Z > [b(y), 2] + 4[A(z,2,2,y), 7] + 6[A(z, 2, 9,9), 2] + 4[A(z, ¥, 9, y), 2]
+[6(z), y] + 4[A(z, 7, 2,),4] + 6]A(2, 3,4, 9), 4] + 4[A (7,4, v,), Y]

for all x,y € R. We substitute —z for z in (13) and comparc (13) with the result to
get

(14)  [5(2), 9]+ 4A(z, z,7,9), 2] + 6|A(z, 7,3, 9), 4] + 4A(z, 4, 9,0),7] € Z

for all z,y € R since R is 2-torsion free.
Letting y = x 4+ y in (14) and using (14) give

(15)  [6(2), 9] + 4[A(z, 2, 2,y), 2] + 3[A(2, 7, y,9), 2] + 2[A(z, 7, 2,y), 4] € Z
for all z,y € R. We set x = —z in (15) and compare (15) with the result to obtain
(16) 3[A(z,z,y,9),2] + 2(A(z, z,2,), 9] € Z

for all z,y € R since R is 2-torsion free.
Replacing x by z + y in (16) and using (16), we have

(17) [6(x),y] + 4[A(z, z,7,y),2] € Z for all 2,y € R.
Taking y = 22 in (17) and invoking (12) show that
(18) Z 3 [5(z), 2%] + 4{A(z, z, x,22),x] = 10[6(z),z]z forally € R
and commuting with §(z) in (18) gives
(19) 10[6(x),z]> =0 for all y € R.
On the other hand, substituting y by zy in (17), we obtain
Z > [§(z),zy] + 4[A(z, z, 2, TY), 7]
(20) = z{[8(z),y] + 4[A(z, 7, ,y), ]} + 46(z)[y, z] + 5[6(z), z]y
for all z,y € R and hence we have, for all z,y € R,
(2 {[5(2), 8] + 4[A (e, ,2,), 21}, 7] + 46y, 7] + 5[5(2), aly, 2] = 0.
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So we get

(21) 46(2)(ly, ], 2] + 9[6(z), 2]y, z] =0 forallz,y € R
according to (17).
Substituting &(x)y for y in (21), it follows that

0 = §(z){46(2)[ly, =], 2] + 9[é(x), z][y, 2]} + 4[[8(=), =], 2]

+85(2)[5(z), ][y, z] + 9[6(x),z)’y forall z,y € R
which, by (1) and (21), implies that
(22) - 88(x)[6(x), z][y, z] +9[6(x),z]>y =0 for all 2,y € R.
Letting y = [6(z), ] in (22), we arrive at 9[6(z),z]® = 0 and so we have

9(6(x), z)> RI[6(z),x)> =0 for all z € R.

Since R is semiprime, we deduce that
(23) 9[6(x),z]> =0 forallz € R.

Thus, the relations (19) and (23) yield [§(z),z]> = 0 for all £ € R. Since the
center of a semiprime ring contains no nonzero nilpotent clements, we conclude that
[6(z),z] = O for all x € R. This completes the proof of the theorem. O

The following result is an analogue of Posner’s theorem [4].

Theorem 2. Let R be a 3!-torsion free prime ring. Suppose that there exists a
nonzero 4-permuting 4-derivation A : Rx Rx Rx R — R such that ¢ is centralizing
on R, where § be the trace of A. Then R is commutative.

Proof. Suppose that R is noncommutative. Then it follows from Theorem 2.3 that §
is commuting on R. Hence Lemma 2.2 gives A = 0 which guarantees the conclusion
of the theorem. U
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