ON 4-PERMUTING 4-DERIVATIONS IN PRIME AND SEMIPRIME RINGS

KYOO-HONG PARK

ABSTRACT. Let R be a 2-torsion free semiprime ring. Suppose that there exists a 4-permuting 4-derivation $\Delta: R \times R \times R \times R \to R$ such that the trace is centralizing on R. Then the trace of Δ is commuting on R. In particular, if R is a 3!-torsion free prime ring and Δ is nonzero under the same condition, then R is commutative.

1. Introduction and Preliminaries

Throughout this paper, R will represent an associative ring, and Z will be its center. Let $x,y\in R$. The commutator yx-xy will be denoted by [y,x]. We will also use the identities [xy,z]=[x,z]y+x[y,z] and [x,yz]=[x,y]z+y[x,z]. Then a map $f:R\to R$ is said to be commuting (resp. centralizing) on R if [f(x),x]=0 (resp. $[f(x),x]\in Z$) for all $x\in R$. A map $\Delta:R\times R\times R\times \cdots\times R\to R$ will be said to be n-permuting $(n\geq 3)$ if the equation $\Delta(x_1,x_2,\cdots,x_n)=\Delta(x_{\pi(1)},x_{\pi(2)},\cdots,x_{\pi(n)})$ holds for all $x_1,x_2,\cdots,x_n\in R$ and for every permutation $\{\pi(1),\pi(2),\cdots,\pi(n)\}$. Recall that R is semiprime if $xRx=\{0\}$ implies x=0 and R is prime if $xRy=\{0\}$ implies x=0 or y=0.

An additive map $d: R \to R$ is called a *derivation* if the Leibniz rule d(xy) = d(x)y + xd(y) holds for all $x, y \in R$.

By a bi-derivation we mean a bi-additive map $B: R \times R \to R$ (i.e., B is additive in both arguments) which satisfies the relations

$$B(xy, z) = B(x, z)y + xB(y, z),$$

$$B(x, yz) = B(x, y)z + yB(x, z)$$

Received by the editors February 8, 2007 and, in revised form, July 15, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 16W20, 16W25.

Key words and phrases. prime ring, semiprime ring, commuting map, centralizing map, n-permuting map, derivation, 4-derivation.

for all $x, y \in R$. Let B be symmetric, that is, B(x, y) = B(y, x) for all $x, y \in R$. The map $\beta: R \to R$ defined by $\beta(x) = B(x, x)$ for all $x, y \in R$ is called the trace of B. If R is a noncommutative 2-torsion free prime ring and $B: R \times R \to R$ is a symmetric bi-derivation, then it follows from [1, Theorem 3.5] that B = 0.

A 3-additive map $D: R \times R \times R \to R$ (i.e., additive in each argument) will be called a 3-derivation if the relations

$$D(x_1x_2, y, z) = D(x_1, y, z)x_2 + x_1D(x_2, y, z),$$

 $D(x, y_1y_2, z) = D(x, y_1, z)y_2 + y_1D(x, y_2, z)$

and

$$D(x, y, z_1 z_2) = D(x, y, z_1)z_2 + z_1 D(x, y, z_2)$$

are fulfilled for all $x, y, z, x_i, y_i, z_i \in R$, i = 1, 2. We obtained some results concerning 3-permuting 3-derivations of prime and semiprime rings in [2].

Here we introduce the following map:

A 4-additive map $\Delta: R \times R \times R \times R \to R$ (i.e., additive in each argument) will be called a 4-derivation if the relations

$$egin{aligned} \Delta(x_1x_2,y,z,w) &= \Delta(x_1,y,z,w) x_2 + x_1 \Delta(x_2,y,z,w), \ \Delta(x,y_1y_2,z,w) &= \Delta(x,y_1,z,w) y_2 + y_1 \Delta(x,y_2,z,w), \ \Delta(x,y,z_1z_2,w) &= \Delta(x,y,z_1,w) z_2 + z_1 \Delta(x,y,z_2,w) \end{aligned}$$

and

$$\Delta(x,y,z,w_1w_2) = \Delta(x,y,z,w_1)w_2 + w_1\Delta(x,y,z,w_2)$$

are fulfilled for all $x, y, z, x_i, y_i, z_i, w_i \in R$, i = 1, 2. If Δ is 4-permuting, then the above four relations are equivalent to each other.

For example, let R be commutative. A map $\Delta: R \times R \times R \times R \to R$ defined by $(x, y, z, w) \mapsto d(x)d(y)d(z)d(w)$ for all $x, y, z, w \in R$ is a 4-permuting 4-derivation, where d is a derivation on R.

On the other hand, let

$$R = \left\{ \left(egin{array}{cc} a & b \ 0 & 0 \end{array}
ight) \middle| \ a,b \in \mathbb{C}
ight\},$$

where \mathbb{C} is a complex field. It is clear that R is a noncommutative ring under matrix addition and matrix multiplication. We define a map $\Delta: R \times R \times R \times R \to R$ by

$$\left(\left(\begin{array}{ccc}a_1&b_1\\0&0\end{array}\right),\left(\begin{array}{ccc}a_2&b_2\\0&0\end{array}\right),\left(\begin{array}{ccc}a_3&b_3\\0&0\end{array}\right),\left(\begin{array}{ccc}a_4&b_4\\0&0\end{array}\right)\right)\mapsto\left(\begin{array}{ccc}0&a_1a_2a_3a_4\\0&0\end{array}\right).$$

Then it is easy to see that Δ is a 4-permuting 4-derivation.

Let a map $\delta: R \to R$ defined by $\delta(x) = \Delta(x, x, x, x)$ for all $x \in R$, where $\Delta: R \times R \times R \times R \to R$ is a 4-permuting map, be the *trace* of Δ . It is obvious that, in case when $\Delta: R \times R \times R \times R \to R$ is a 4-permuting map which is also 4-additive, the trace δ of Δ satisfies the relation

$$\delta(x+y) = \delta(x) + \delta(y) + 4\Delta(x,x,x,y) + 6\Delta(x,x,y,y) + 4\Delta(x,y,y,y)$$

for all $x, y \in R$. Since we have

$$\Delta(0, y, z, w) = \Delta(0 + 0, y, z, w) = \Delta(0, y, z, w) + \Delta(0, y, z, w)$$

for all $y, z, w \in R$, we obtain $\Delta(0, y, z, w) = 0$ for all $y, z, w \in R$. Hence we get

$$0 = \Delta(0, y, z, w) = \Delta(x - x, y, z, w) = \Delta(x, y, z, w) + \Delta(-x, y, z, w)$$

and so we see that $\Delta(-x, y, z, w) = -\Delta(x, y, z, w)$ for all $x, y, z \in R$. This tells us that δ is an even function.

A study concerning the theory of centralizing (commuting) maps on prime rings was initiated by the classical result of E. C. Posner [4] which states that the existence of a nonzero centralizing derivation on a prime ring R implies that R is commutative. Since then, a great deal of work in this context has been done by a number of authors (see, e.g., [1] and references therein). For example, as a study concerning centralizing (commuting) maps, J. Vukman [5, 6] investigated symmetric bi-derivations on prime and semiprime rings.

In this paper, we apply the results due to E. C. Posner [4] and J. Vukman [5] to 4-permuting 4-derivations, respectively.

2. The Main Results

We first need the following well-known lemma [3].

Lemma 1. Let R be a prime ring. Let $d: R \to R$ be a derivation and $a \in R$. If ad(x) = 0 holds for all $x \in R$, then we have either a = 0 or d = 0.

We begin our investigation of 4-permuting 4-derivations with the next result.

Lemma 2. Let R be a noncommutative 3!-torsion free prime ring. Suppose that there exists a 4-permuting 4-derivation $\Delta: R \times R \times R \times R \to R$ such that δ is commuting on R, where δ is the trace of Δ . Then we have $\Delta = 0$.

Proof. Suppose that

(1)
$$[\delta(x), x] = 0 for all x \in R.$$

The substitution x = x + y to linearize (1) leads to

$$0 = [\delta(y), x] + 4[\Delta(x, x, x, y), x] + 6[\Delta(x, x, y, y), x] + 4[\Delta(x, y, y, y), x] + [\delta(x), y] + 4[\Delta(x, x, x, y), y] + 6[\Delta(x, x, y, y), y] + 4[\Delta(x, y, y, y), y]$$
(2)

for all $x, y \in R$. Putting -x instead of x in (2) and comparing (2) with the result, we arrive at

(3)
$$[\delta(x), y] + 4[\Delta(x, x, x, y), x] + 6[\Delta(x, x, y, y), y] + 4[\Delta(x, y, y, y), x] = 0$$

for all $x, y \in R$ since δ is even. We set y = x + y in (3) and then use (1) and (3) to obtain

(4)
$$[\delta(x), y] + 4[\Delta(x, x, x, y), x] + 3[\Delta(x, x, y, y), x] + 2[\Delta(x, x, x, y), y] = 0$$

for all $x, y \in R$. Replacing x by -x in (4), we have

(5)
$$3[\Delta(x, x, y, y), x] + 2[\Delta(x, x, x, y), y] = 0$$
 for all $x \in R$.

We let y = x + y in (5) and then employ (1) and (5) to get

$$0 = 2[\delta(x), y] + 8[\delta(x, x, x, y), x] + 3[\Delta(x, x, y, y), x] + 2[\Delta(x, x, x, y), y]$$
$$= 2[\delta(x), y] + 8[\delta(x, x, x, y), x]$$

which reduces to the equation

(6)
$$0 = [\delta(x), y] + 4[\delta(x, x, x, y), x] \text{ for all } x, y \in R.$$

Let us write in (6) xy instead of y. Then we get

$$\begin{split} 0 &= [\delta(x), xy] + 4[\Delta(x, x, x, xy), x] \\ &= x[\delta(x), y] + 4\delta(x)[y, x] + 4x[\Delta(x, x, x, y), x] \\ &= x\{[\delta(x), y] + 4[\Delta(x, x, x, y), x]\} + 4\delta(x)[y, x] \end{split}$$

which implies that

(7)
$$\delta(x)[y,x] = 0 \quad \text{for all} \quad x,y \in R$$

on account of (6). From (7) and Lemma 2.1, we have $\delta(x) = 0$ for all $x \in R$ ($x \notin Z$) since for every fixed $x \in R$, a map $y \mapsto [y, x]$ is a derivation on R.

Now, let $x \in R$ $(x \in Z)$ and $y \in R$ $(y \notin Z)$. Then $y + x \notin Z$ and $-y \notin Z$. Thus we have

$$0 = \delta(y+x) = \delta(y) + \delta(x) + 4\Delta(y, y, y, x) + 6\Delta(y, y, x, x) + 4\Delta(y, x, x, x)$$
$$= \delta(x) + 4\Delta(y, y, y, x) + 6\Delta(y, y, x, x) + 4\Delta(y, x, x, x)$$

and

$$0 = \delta(y - x) = \delta(y) + \delta(x) - 4\Delta(y, y, y, x) + 6\Delta(y, y, x, x) - 4\Delta(y, x, x, x)$$
$$= \delta(x) - 4\Delta(y, y, y, x) + 6\Delta(y, y, x, x) - 4\Delta(y, x, x, x)$$

which shows that

(8)
$$\delta(x) + 6\Delta(x, x, y, y) = 0.$$

Replacing $y \in R(y \notin Z)$ by 2y in (8) and using (8), we obtain that

$$18\Delta(x, x, y, y) = 0 = \Delta(x, x, y, y)$$

and so the relation (8) gives $\delta(x) = 0$ for all $x \in R$ $(x \in Z)$. Therefore we conclude that $\delta(x) = 0$ for all $x \in R$.

On the other hand, since the relation

$$\delta(x+y) = \delta(x) + \delta(y) + 4\Delta(x, x, x, y) + 6\Delta(x, x, y, y) + 4\Delta(x, y, y, y)$$

is fulfilled for all $x, y \in R$, it follows that

(9)
$$2\Delta(x,x,x,y) + 3\Delta(x,x,y,y) + 2\Delta(x,y,y,y) = 0$$
 for all $x,y \in R$ and putting $x = -x$ in (9) and utilizing (9) yield

(10)
$$3\Delta(x, x, y, y) = 0 = \Delta(x, x, y, y) \quad \text{for all} \quad x, y \in R.$$

Let us substitute y + w for y in (10) and then use (10). Then we obtain that

(11)
$$2\Delta(x,x,y,w)=0=\Delta(x,x,y,w) \quad \text{for all} \ \ x,y,w\in R.$$

Finally, replacing x by x + z in (11) and applying (11), we get

$$2\Delta(x,y,z,w)=0=\Delta(x,y,z,w)\quad\text{for all}\ \ x,y,z,w\in R,$$

that is, $\Delta(x, y, z, w) = 0$ for all $x, y, z, w \in R$ which completes the proof of the theorem.

We continue with the following result for 4-permuting 4-derivations on semiprime rings.

Theorem 1. Let R be a noncommutative 2-torsion free semiprime ring. Suppose that there exists a 4-permuting 4-derivation $\Delta: R \times R \times R \times R \to R$ such that δ is centralizing on R, where δ is the trace of Δ . Then δ is commuting on R.

Proof. Assume that

(12)
$$[\delta(x), x] \in Z \quad \text{for all } x \in R.$$

By linearizing (12) and again using (12), we obtain

(13)
$$Z \ni [\delta(y), x] + 4[\Delta(x, x, x, y), x] + 6[\Delta(x, x, y, y), x] + 4[\Delta(x, y, y, y), x] + [\delta(x), y] + 4[\Delta(x, x, x, y), y] + 6[\Delta(x, x, y, y), y] + 4[\Delta(x, y, y, y), y]$$

for all $x, y \in R$. We substitute -x for x in (13) and compare (13) with the result to get

$$[\delta(x),y]+4[\Delta(x,x,x,y),x]+6[\Delta(x,x,y,y),y]+4[\Delta(x,y,y,y),x]\in Z$$
 for all $x,y\in R$ since R is 2-torsion free.

Letting y = x + y in (14) and using (14) give

(15)
$$[\delta(x), y] + 4[\Delta(x, x, x, y), x] + 3[\Delta(x, x, y, y), x] + 2[\Delta(x, x, x, y), y] \in Z$$

for all $x, y \in R$. We set x = -x in (15) and compare (15) with the result to obtain

(16)
$$3[\Delta(x, x, y, y), x] + 2[\Delta(x, x, x, y), y] \in Z$$

for all $x, y \in R$ since R is 2-torsion free.

Replacing x by x + y in (16) and using (16), we have

(17)
$$[\delta(x), y] + 4[\Delta(x, x, x, y), x] \in Z for all x, y \in R.$$

Taking $y = x^2$ in (17) and invoking (12) show that

(18)
$$Z \ni [\delta(x), x^2] + 4[\Delta(x, x, x, x^2), x] = 10[\delta(x), x]x$$
 for all $y \in R$

and commuting with $\delta(x)$ in (18) gives

(19)
$$10[\delta(x), x]^2 = 0$$
 for all $y \in R$.

On the other hand, substituting y by xy in (17), we obtain

$$Z \ni [\delta(x), xy] + 4[\Delta(x, x, x, xy), x]$$

$$= x[\{\delta(x), x\}] + 4[\Delta(x, x, x, xy), x] + 4\delta(x)[x, x] + 5[\delta(x), x]$$

(20)
$$= x \{ [\delta(x), y] + 4[\Delta(x, x, x, y), x] \} + 4\delta(x)[y, x] + 5[\delta(x), x]y$$

for all $x, y \in R$ and hence we have, for all $x, y \in R$,

$$[x\{[\delta(x),y]+4[\Delta(x,x,x,y),x]\}, x]+[4\delta(y)[y,x]+5[\delta(x),x]y, x]=0.$$

So we get

(21)
$$4\delta(x)[[y,x],x] + 9[\delta(x),x][y,x] = 0 \text{ for all } x,y \in R$$

according to (17).

Substituting $\delta(x)y$ for y in (21), it follows that

$$0 = \delta(x) \{ 4\delta(x)[[y, x], x] + 9[\delta(x), x][y, x] \} + 4[[\delta(x), x], x]$$

+8\delta(x)[\delta(x), x][y, x] + 9[\delta(x), x]^2y for all x, y \in R

which, by (1) and (21), implies that

(22)
$$8\delta(x)[\delta(x), x][y, x] + 9[\delta(x), x]^2 y = 0 \text{ for all } x, y \in R.$$

Letting $y = [\delta(x), x]$ in (22), we arrive at $9[\delta(x), x]^3 = 0$ and so we have

$$9[\delta(x), x]^2 R 9[\delta(x), x]^2 = 0$$
 for all $x \in R$.

Since R is semiprime, we deduce that

(23)
$$9[\delta(x), x]^2 = 0$$
 for all $x \in R$.

Thus, the relations (19) and (23) yield $[\delta(x), x]^2 = 0$ for all $x \in R$. Since the center of a semiprime ring contains no nonzero nilpotent elements, we conclude that $[\delta(x), x] = 0$ for all $x \in R$. This completes the proof of the theorem.

The following result is an analogue of Posner's theorem [4].

Theorem 2. Let R be a 3!-torsion free prime ring. Suppose that there exists a nonzero 4-permuting 4-derivation $\Delta: R \times R \times R \times R \to R$ such that δ is centralizing on R, where δ be the trace of Δ . Then R is commutative.

Proof. Suppose that R is noncommutative. Then it follows from Theorem 2.3 that δ is commuting on R. Hence Lemma 2.2 gives $\Delta = 0$ which guarantees the conclusion of the theorem.

REFERENCES

- 1. M. Brešar: Commuting maps: a survey. Taiwanese J. Math. 8 (2004), no. 3, 361-397.
- 2. Y.-S. Jung & K.-H. Park: On prime and semiprime rings with permuting 3-derivations. Submitted.
- 3. J. Mayne: Centralizing mappings of prime rings. Canad. Math. Bull. 27 (1984), 122-126.
- 4. E.C. Posner: Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

- 5. J. Vukman: Symmetric bi-derivations on prime and semi-prime rings. *Aequationes Math.* **38** (1989), 245-254.
- 6. J. Vukman: Two results concerning symmetric bi-derivations on prime rings. *Aequationes Math.* 40 (1990), 181-189.

DEPARTMENT OF MATHEMATICS EDUCATION, SEOWON UNIVERSITY, CHEONGJU, CHUNGBUK 361-742, KOREA

Email address: parkkh@@seowon.ac.kr