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CROSSED PRODUCTS OF THE FREE GROUP AND
SEMIGROUP C*-ALGEBRAS BY FLOWS

TAKAHIRO SUDO
Dedicated to Professor Hiroshi Takai on his siztieth birthday

ABSTRACT. We study crossed products of the free group and semigroup C™”-algebras
by actions of R, i.e., flows, and estimate and compute their stable rank.

INTRODUCTION

Crosscd products of C*-algcbras are of great interest in the C*-algebra theory (scc
Blackadar [2] and Pedersen [8]). Given a (noncommutative) C*-dynamical system
(&, o, G) as well as a usual dynamical one, its crossed product A x, G is constructed,
where 2 is a C*-algebra, G is a locally compact group, and « is an action of G
on 2, ie., a homomorphism from G to the automorphism group of 2. If % is
commutative so that A = Cy(X) the C*-algebra of continuous functions on a locally
compact Hausdorff space X vanishing at infinity, then Co(X) x4 G corresponds to
the (classical) dynamical system (X, a, G), where ag(f)(h) = fla, 1(h)) for g € G,
f€Cy(X),and h € X.

In the case where 2 is nuclear, i.e., amenable, its crossed products by flows, i.c.,
G =R (amcnable so that the full and reduced crossed products are the samc) have
been interested and well studied (sec Kishimoto [5] among many others), but the
non-nuclear case has not been done well. Although its difficulty has understood to
some extent in some senses such as noncommutativity and non-nuclearity, this time
we have tried to compute and determined the stable rank (of Rieffel [10]) of the flow
crossed products of the important non-nuclear examples such as the full and reduced
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group C*-algebras of free groups and the full and reduced semigroup C*-algebras of
free semigroups, which arc extremecly noncommutative.

Let A be a unital C*-algebra. The stable rank of 2 is defined to be the positive
smallest integer n = sr(?) such that L,(2) is densc in A", where (a;)7_; € Ln(21)
means that there exists (b;)7.; € ™A™ such that 3°7°_, bja; is invertible in 2. If no
such n, sct sr(?A) = co. If A is non-unital, its stable rank is defined by that of the
unitization of A by C. Scc [10] and [2].

1. CrosseD PropucTs oF THE FREE GROUP C*-ALGEBRAS

Let C*(Fz) be the full group C*-algebra of the free group F, with two gencrators.
Let U,V be the (universal) unitaries generating C*(Fy). Define an action a of R
on C*(Fy) (i.c., a continuous homomorphism from R to the automorphism group
of C*(F3)) by ay(U) = €™ U and ay(V) = >V for t € R, where an irrational
number 8 € R is fixed. Such an action of R on a C*-algebra is usually called a
flow. To the C*-dynamical system (C*(F»),R. ) in this sense we can associate the
crossed product C*-algebra denoted by C*(Fz) X, R. See [8] for crossed products of
C*-algcebras.

Similarly, let C}(F3) be the reduced group C*-algebra of F». We can construct
its C*-dynamical system (C}(F»), R, ) as above and its crossed product C*-algcbra
denoted by C}(F) x4 R.

We first check the following which might be known to Specialists:

Proposition 1.1. The crossed product C*(F3) x4 R is not simple, but the crossed
product C¥(Fy) X4 R is simple.

Proof. By universality we have an onto x-homomorphism from C*(F3) to C}(F3).
By construction this extends from C*(F3) x4 R to Cy(F3) @, R. Supposc that
C*(F2) xq R 22 C}(Fy) X4 R. Then their dual crossed product C*-algebras by dual
actions of R must be isomorphic, which implies that C*(Fy) @ K = C}(F2) ® K
by Takai duality (see Takai [11] and cf. [2] and [8]), where K is the C*-algebra of
compact opcrators, from which it follows that C*(Fy) = C}(F3) by cutting down by
a minimal projection of K. This contradicts with them non-isomorphic.

The simplicity of C;(F;) %4 R follows from the norm minimality and simplicity
of C}(F3) and the action minimality of «, which is deduced from the minimality
on the product space(s) of the C*-algebras generated by U and V respectively (cf.
Akcemann and Lee [1]). u
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Theorem 1.2. We obtain sr(C}{F,) x4 R) = 1.

Proof. Since Fy = Z x Z the free product of Z, C}(F3) is isomorphic to the reduced
frece product C*-algebra C*(Z) *c, C*(Z). This is isomorphic to C(T) x¢,, C(T)
via the Fourier transform. Since cach C(T) is invariant under the action a of R,
the corresponding crossed products of the form C(T) x, R are C*-subalgebras of
Cr(F2) x4 R, and they generate C*(Fy) x4 R. By the imprimitivity theorcm (of
Green [4)),

C(T) %a R = C(R/Z) %4 R = C*(Z) @ K(L*(R/Z)) = C(T) © K,

where K(L?(R/Z)) is the C*-algebra of compact operators on the Hilbert space
L*(R/Z), and K is the C*-algebra of compact operators on a separable infinite
dimensional Hilbert space. It is deduced from this splitting into tensor products
that there cxists a quotient map from the (minimal) tensor product (C(T) *c r
C(T)) & (K*K) to C}(F>) x4 R. Since K is an inductive limit of n x n matrix
algebras M, (C) over C, we have
K+ K = (lim M,(C)) * (lim M, (C)) = lim(M,(C) * Mn(C))

(sec Pedersen [9]). Furthermore,

(C(T) *c,r C(T)) & (K K) = (C(T) *c,r C(T)) & im(Mn(C) * My (C))
2 1lim[(C(T) *c,r C(T)) ® (Mn(C) x Mn(C))]
= lim(Bn *((Tsc..c(m)&Cr Bn)s

where B, *(C(T)*c.»C(T))®C,r Bn is the reduced amalgamated free product C*-algcbra
of B, over (C(T) *c C(T)) @ C, with B, = (C(T) *¢,» C(T)) ® Mn(C). Since
C(T) x¢,» C(T) has stable rank one (Dykema, Haagerup and Rerdam [3]). we have

st((C(T) 3, C(T)) s Ma(C)) = 1
by Rieffel [10, Theorem 6.1]. It follows by an application of [3] that
st(((C(T) x¢,r C(T)) & My(C)) *r ((C(T) *c.r C(T)) @ Mn(C))) = 1,

where note that M,,(C) = C™ x Z, the crossed product of C" by the cyclic group Zr,
with the action permutation. This implies that By, *(c(T)xc .c(T)sC,r Bn has stable
rank one. Indeed, any element of the canonical dense part (generated by 8, and
(distinct) B, with (C(T)xc,,C(T))®C identified) in By *(o(T)sc.,C(T))oC,» Bn can be
lifited to an element of that of B, xc » By. Therefore, (C(T)*¢c,» C(T)) ® (K+K) has
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stable rank one, which implics the conclusion because the stable rank is preserved

under taking quoticnts (sec [10, Theorem 4.3)). U
Theorem 1.3. We obtain st(C*(Fy) x4 R) = oo.

Proof. Note that C*(F3) is isomorphic to the unital full free product C*-algebra
C*(Z) *c C*(Z). This is isomorphic to C(T) ¢ C(T). We usc the same methods
for the proof of Theorem 1.2. Since C*(F3) has stable rank oo (sce [10, Theorem
6.7]), so doecs C*(Fy) & M,(C) (sce [10, Theorem 6.1]). Also, it is shown that the
free product of C*(F;) @ M,(C) and its amalgam over C*(Fy) ® C have stable rank
oco. It follows that C*(F3) & (K * K) has stable rank oo. Thercfore, the conclusion
is deduced by considering lifting from C*(F) x4 R.

Scc also the proof of Theorem 2.2 given below. It is shown that K x K has stable
rank co. Note that there cxists an onto *-homomorphism from C*(F3) to C. This
implics that there exists an onto *-homomorphism from C*(F )& (K+K) to KxK. O

Let C*(Fy,) be the full group C*-algebra of the frec group F, with n gencrators.
Let U; (1 < j < n) be the (universal) unitarics generating C*(F,,). Define an action
a of R on C*(F,) by ay(U;) = €*™!U; for t € R, where 6; € R arc rationally
independent and fixed. To the C*-dynamical system (C*(F},),R. a) in this scnsc we
can associate the crossed product C*-algebra denoted by C*(F;,) x4 R.

Similarly, let C}(F;,) be the reduced group C*-algebra of F,,. We can construct
its C*-dynamical system (C}(F,), R, «) as above and its crossed product C*-algcbra
denoted by C}(F,) x4 R.

Proposition 1.4. The crossed product C*(F,) x4 R is not simple, but the crossed
product C}(Fy,) x4 R is simple.

Proof. This is proved by the same method as in Proposition 1.1. O
Theorem 1.5. We obtain sr(C}(F,) x4 R) = 1.

Proof. Since F,, = +"Z the n-fold free product of Z, C}(F,) is isomorphic to the
reduced n-fold free product C*-algebra *¢,C*(Z). This is isomorphic to i(’é’rC(’II‘)
via the Fourier transform. Since cach C(T) is invariant under the action o of R,
the corresponding crossed products of the form C(T) x4 R are C*-subalgebras of
Cr(Fn) Xo R, and they generate C(F,) x4 R. By imprimitivity theorem, C(T) x4
R = C(T) ® K as shown in Theorem 1.2. It is deduced from this splitting into
tensor products that there exists a quotient map from the (minimal) tensor product
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(x¢,.C(T)) ® (+"K) to C;(Fy,) ¥4 R. It follows that

K= (- (K«K)*xK)--- ) xK

= (- (((lim My (C)) * (lim M,,(C))) * (li; M (C))---) K

= (- (lim( My, (C) * My, (C))) = (lim M (C)) -+ ) K

= (- (m(Mn(C) * Mn(C) * My (C)) -+ ) * (lim My (C)) = Tim (" M (C)).
Furthermore,

(+¢-C(T)) & (+"K) = (x¢.C(T)) @ im(+" M (C))
lim[(xg ,C(T)) @ (+" Mn(C))]

im[+tr oemyec, ((+#2,C(T)) @ Ma(C))),
where *(*n C(T))@Cr((*%,rc (T)) ® M,(C)) is the n-fold reduced amalgamated frec
product C*-algebra of (*x¢,C(T)) @ Mp(C) over (x¢,C(T)) @ C. Since ¢, C(T)
has stable rank one (Dykema, Haagerup and Rerdam [3]), we have sr((x¢ ,.C(T)) @
M,(C)) = 1 by Rieflel [10, Theorem 6.1]. It follows by an application of [3] that
st(x7((+¢,C(T)) ® My(C))) = 1, which implies that 7 o o mec,((x¢,C(T) ®
My (C)) has stable rank one. Therefore, (x¢ ,C(T)) ® (+"K) has stable rank one,

which implics the conclusion becausc the stable rank is preserved under taking quo-
ticnts. O

HZ

HZ

Theorem 1.6. We obtain sr(C*(F,) X4 R) = o0

Proof. Notc that C*(F,,) is isomorphic to the unital n-fold full frec product C*-
algebra *¢C*(Z). This is isomorphic to *2C(T). We use the same methods for the

proof of Theorem 1.5. The conclusion follows from the same rcasoning as in the
proof of Theorem 1.3. 0

2. CrosseED PropucTs OF THE FREE SEMIGROUP C*-ALGEBRAS BY R

Let C*(N * N) be the full group C*-algebra of the frec semigroup N * N with
two generators. Let S, 7" be the (universal) isometrics generating C*(N x N). Define
an action a of R on C*(N x N) (i.e., a continuous homomorphism from R to the
automorphism group of C*(N % N)) by a;(S) = €?™S and ay(T) = e**'T for
t € R, where an irrational number # € R is fixed. To the C*-dynamical system

(C*(N x N),R, ) in this sense we can associate the crossed product C*-algcbra
denoted by C*(N % N) x4 R.
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Similarly, let C}(N * N) be the reduced semigroup C*-algebra of N« N We can
construct its C*-dynamical system (C}(N+N), R, a) as above and its crosscd product
C*-algcbra denoted by CF(N = N) x, R.

Proposition 2.1. The crossed product C*(N x N) x, R is not simple.
Proof. This follows from the same argument as in Proposition 1.1. O

Theorem 2.2. The crossed product C}(N x N) x4 R is not simple, and we obtain
st(Cr(N*N) x, R) = oo.

Proof. The C*-algebra C;:(N * N) is isomorphic to the reduced free product C*-
algebra C*(N) *¢» C*(N). Also, C*(N) is just the Tocplitz algebra generated by a
proper isometry (sec Murphy [6]). Since cach C*(N) is invariant under the action o
of R, the éorrcsponding crossed products of the form C*(N) x, R arc C*-subalgcbras
of C}(NxN) x, R, and they generate C (N * N) x, R.

Recall that C*(N) has the following exact sequence:

0-K—-C*(N)->C(T)—0.
Morcover, since K is invariant under the action o of R, we have
0->KxgR—-C*(N) %, R — C(T) xR — 0.

Also, K x4 R = K& C*(R) = K & Cy(R) because the action « on K is in fact an
adjoint action by an implemented unitary. Furthermore, the imprimitivity theorem
implics C(T) x, R = C(T) & K as shown in Theorem 1.2. It is deduced from this

dccomposition that there exists a short exact sequence
0= (KxC*"N)+ C*(N) *x K) @ Co(R) » C;(N*N) x, R — @ — 0,

and there exists a quotient map from the (minimal) tensor product (C(T)*¢ »C(T))®
(K *K) to the quotient C*-algebra Q. It follows that C}(N* N) x, R is not simple.

Furthermore, we have
0-K+K—-K+xC*(N)+C*(N)*K - K*C(T)+ C(T) *xK — 0,
which implies that

0 — (K *K) ® Co(R)
— (K * C*(N) + C*(N) *K) ® Co(R) — (K * C(T) + C(T) *K) ® Co(R) — 0.
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Notc that (K*K)®Cy(R) has K*K as a quoticnt, and KxK = lim(Mn(C) * M, (C)).

Also, M, (C) = C" x Z,,, where the action of Z,, on C” is the permutation. It follows
that

M,,(C) % M (C) = (C™ x Z) * (C™ % Zy) = (C" % C™) % (Zyy * Zo,).

Since C™ has the trivial x-homomorphism to C, it induces a *-homomorphism from
C" * C" to C. Since the unit of C” * C” is invariant under the action of Z,, * Z,,
there cxists an onto *-homomorphism:

(C"xC™) % (Zp, *xZp) — Cx(ZyxZy) — 0,
and C x (Zy, * Zy) = C*(Zy, * Zy,) is the full group C*-algebra of the frec product
Zy * Ly. It is shown in Nagisa (7] that C*(Z, x Z,) has stable rank co. Since K

is the co-direct limit of M, (C), K K is also the cg-direct limit of M,,(C) x M, (C).
Hence by Rieffel [10, Theorem 5.2],

st(K + K) = supsr(My(C) * My (C)) = oc.

Thus, sr((K * K) ® Co(R)) = co by [10, Theorem 4.3]. Therefore, by [10, Theorem
4.4] we obtain the conclusion. t

Corollary 2.3. We obtain sr(C*(N x N) x4 R) = oo.

Let C*(**N) be the full group C*-algebra of the k-fold free semigroup **N with &
gencrators. Let S; (1 < j < k) be the (universal) k isometries generating C*(**N).
Define an action o of R on C*(x*N) by a4(S;) = €?"5tS; for t € R, where 8; € R arc
rationally independent and fixed. To the C*-dynamical system (C*(**N),R,a) in
this scnse we can associate the crossed product C*-algebra denoted by C*(x*N) x, R.

Similarly, let C;(**N) be the reduced semigroup C*-algebra of **N. We can
construct its C*-dynamical system (C*(x*N), R, a) as above and its crossed product
C*-algebra denoted by C(+*N) x, R.

Proposition 2.4. The crossed product C*(*’“N) o R is not simple.
Proof. This follows from the same argument as in Proposition 1.1. 0

Theorem 2.5. The crossed product C*(x*N) x, R is not simple, and we obtain
st(C*(**N) x4 R) = oo0.

Proof. The C*-algebra C?(+*N) is isomorphic to the reduced k-fold free product
C*-algebra £, C*(N). Since each C*(N) is invariant under the action o of R,
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the corresponding crossed products of the form C*(N) x4 R are C*-subalgebras of
C} (+*N) x4 R, and they generate C (¥*N) x,R. We use the following decomposition:

0—KxgR— C*(N) xg R — C(T) x4 R — 0.

and K »x, R 2K ® Cy(R) and C(T) x, R = C(T) ® K, which is shown in Theorem
2.2. 1t is deduced from this decomposition that C(**N) x4 R has (**K) & Cp(R) as
a closced ideal, from which C}(x*N) x4 R is not simple. This closed ideal has **K as
a quotient. Since K+ K = lim(My(C) * M,(C)), we have
= li_r)n(*kbfn((C))
as shown before. Also, M,(C) = C" x Z,. It follows that
M, (C) 2 %(C™ % Z,) = (+x*C") x (x*Z,).

Since C™ has the trivial *-homomorphism to C, it induces a *-homomorphism from
xkC™ to C. Since the unit of +¥C" is invariant under the action of *kZ,  there cxists

an onto *-homomorphism:
(+*C™) % (+*Z,) — C % (x*Z,) — 0,

and C x (x¥Z,) = C*(+*Z,) is the full group C*-algebra of the free product *X7Z,,.
Furthermore, a canonical quotient from **Z,, to Z,, *Z,, induces that there exists an
onto *-homomorphism from C*(+*Z,,) to C*(Z, * Zy,). 1t is shown in Nagisa [7] that
C*(Zn * Zy) has stable rank oo. This implies that C*(¥*Z,) also has stable rank oo.
Hence, *k.Mn(C) has stable rank co. Since K is the cp-direct limit of M, (C), **K is
also the cp-direct limit of ** M, (C). Hence

st(x*K) = 5171Lp st(x¥ M,,(C)) = oo.

Thus, sr((x*K) ® Co(R)) = oo by Rieffel [10, Theorem 4.3]. Therefore, by [10,
Theorem 4.4] we obtain the conclusion. o

Corollary 2.6. We obtain st(C*(**N) x, R) = oo.
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