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APPROXIMATING SOLUTIONS OF EQUATIONS
BY COMBINING NEWTON-LIKE METHODS

IoannNis K. ARGYROS

ABSTRACT. In cases sufficient conditions for the semilocal convergence of Newton-
like methods are violated, we start with a modified Newton-like method (whose
weaker convergence conditions hold) until we stop at a certain finite step. Then
using as a starting guess the point found above we show convergence of the Newton-
like method to a locally unique solution of a nonlinear operator equation in a Banach
space setting. A numerical example is also provided.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique
solution z* of the nonlinear equation

(1) F(z) =0,
where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach

space X with values in a Banach space Y.

The most popular methods for generating sequences approximating z* are un-
doubtedly Newton-like methods of the form

(2) Yn+1 = Yn — A(n) "F(yn), (y€D), (n>0)
and the corresponding modified Newton-like methods given by
(3) Znt1 = Tn — Azo) “F(zn), (20 € D), (n > 0).

Here A(z) € L(X,Y) (z € D) the space of bounded linear operators from X
into Y. The most popular choice for A with is an approximation of F'(z) is usually
A(z) = F'(z) (z € D). In this case (2) becomes Newton’s method and (3) the
corresponding Modified Newton method.
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Local as well as semilocal convergence theorems for methods (2) and (3) have been
given by many authors under different assumptions. A survey of such results can
be found in [1]-{7] and the references there. Method (2) is faster but more expen-
sive than (3). Moreover the sufficient Newton-Kantorovich type conditions for the
semilocal convergence of method (2) are stronger (see (9)) than method’s (3) (see
(20) or (68)). Here we take advantage of these observations in case (9) is violated for
some starting guess yp but (20) or (68) hold for zy = yp. Using formula (60) we can
always find a finite integer N such that for yo = xy conditions (9) holds true. This
way after using slower method (3) for N steps we continue with faster method (2)
to obtain convergence. A numerical example is also provided where our technique
is demonstrated.

2. SEMILOCAL CONVERGENCE ANALYSIS

We state the well-Known semilocal convergence result for Newton-like method
(), 7, 2.

Theorem 2.1. Let F': D C X — Y be Fréchet differentiable and let A(z) € L(X,Y)
be an approzimation of F'(zx). Assume there exist yo € D, the inverse A(yo) ' of
A(xo) and constantsn, K >0, M, L, u, | > 0 such that for all z,y € D the following
conditions hold:

(4) | A(yo) ' F(yo)|| < n

(5) [Awo) T [F' (@) ~ F @)l < K lle~yll,
©) 14 Gwo) ' (2)[| - A=) < M ||z = woll + p,
(7) [ Ayo) " [A(z) — Alwo)]|| < Lllz - yoll +1,
(8) | b=p+l<1,

(9) ; h=on< %(1_5)2

where,

(10) o = max{K, M + L},

and

(11) Ulyo,t") ={z € X | ] — ol <¢*} C D,
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where t*is the smallest zero of scalar function
(12) £(t) = %tz —(1=b)t+7
given by
b AV
(13) t*=1 b—+/(1-0) Zh,
o

with the larger zero t** given by

(14) t**zl—b+\/(l—b)2—2h.

Then,
(a) Scalar sequence {t,}(n > 0) generated by
f(tn)
15 thyr = — =0
( ) n+1 t’n+1_l_Ltn7 0

s nondecreasing and converges to t*.

(b) Sequence {yn} generated by Newton-like method (2) is well defined, remains
in U(yo, t*) for alln > 0, and converges to a unique solution =* in U(yo, t*)N
D ifh = 3(1-b)2 or in U(yo, t*)ND if h < $(1-b). Moreover the following
estimates hold for all n > 0: '

(16) Miyn+r — ynll <ot — ta,
and
(17) ln — | < £ — ta.
We can show the main semilocal convergence theorem for the modified Newton-

like method (3).

Theorem 2.2. Let F : D C X — Y be a Fréchet differentiable operator. For
xo € D let A(zo) € L(X,Y) such that A(zo)™! € L(Y,X), and (4) hold (with
Yo = xp). Assume there ezxist constants My > 0, pg € [0,1) such that together with
(5) the following conditions hold:

(18)  ||A(zo) [F'(z) — A(zo)]|| < Mo llx — zol| + po,  for allz € D,
(19) MO S K,

(20) ha=Kn < 2(1— )

and

(21) 0('1:0,7'*) c Da



38 IoanNIs K. ARGYROS

where r* is the smallest of the two positive zeros of function

(22) g(r) = §T2 — (1= po)r +m,

given by

e _ 1= po— /(1—po)® —2hs
7 .
Note that the largest root r** of g is given by

P = 1—N0+\/(1—ﬂ0)2—2h,4

(23) r

24
(24) -
Then,
(a) Scalar sequence {rp} (n >0 ) generated by
(25) Tn4l =Tn+g(rn) (ro=0), (n2> 0)

is nondecreasing, and converges to r*.

(b) Sequence {zn} generated by modified Newton-like method (3) remains in
U(zo,r*) for all n > 0, and converges to a unique solution * of equation
F(z) = 0 in U(xg, *). Moreover the following estimates hold for alln > 0:

(26) v Zn+1 — Znll < Tri1 - Ta,
and

27 |lzn — z*|| < r* — 7.
Furthermore, if there exists R > r* such that

(28) 2ot +R) t a0 <1
then the solution =* is unique in U(xo, R)

Proof. (a) It follows by (20) that function g has two positive zeros r*and r** with
r* < r**. Simple induction on n > 0 shows that r, < rp41 < r* for all n > 0. That

is, sequence {r,} is nondecreasing, and bounded above by r*. In view of (25), we
get r* = lim r,.
n

—00
(b) We shall show:

(29) lzk1 — zill < Tot1 — 7%,
and
(30) U(zpyr,m — rip1) C Uz, ™ —71)

hold for all £ > 0.
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For every z € U(x1, r* — 1),
Iz — zoll < llz = 1l + lz1 — zol| S 7° — 14 =71" =g

implies z € U(zg, * — 7). Since also

1 — zoll = ||A(zo) ' F(z0)|| < n=r1—ro,
(29) and (30) hold for k = 0. Given they hold for n = 0,1, ..., k, then
k+1 k+1
k41 — zol| < Z lz: — ziall < Z(Ti — Ti-1) = Tk41 — T0 = Tk+1,

and
”:Ek + t(xk+1 - :ck) — :I:o” <7+ t(rk—}—l — ’I'k) <r* te [0, 1].

Using (3) we obtain the approximation

(31) F(zp+1) = F(xr11) — F(xr) — A(zo)(Tr41 — k)

1
- /0 [F (2 + t(zpss — 72)) — A(zo))(@rs1 — z)dt

1
- /0 /(e + onnn — 22)) — F (@) @ - oxddt

+ [F'(zk) — A(zo)](Zk+1 — zk)-

39

In view of (3), (5), (18), (19), (25), (31), and the induction hypotheses, we obtain

in turn
(32) |lzks2 — zrt1ll = || A(zo) T F (i) ||
K
<3 ki1 ~ zi)|® + [Mo |zk — 2ol + po] |Zk+1 — zkll
K 2
< E(rk-f-l —1)° + [Mork + po)(Tk+1 — %)
K

= 'Q—(tk+1 — )% + Motk (tnt1 — tn) + po(tis1 — te)
— (k41 — ) + g(tk)
= g(trt1) + (Mo — k)trtes1 — (Mo — k)t}
= g(tk+1) + te(Mo — K)(te+1 — tr) < g(tes1) = trr2 — tht1,
which shows (29) for all k£ > 0.
Thus for every z € U (Tky9, ™* — rry2) we have
2 — Ze41ll < Nz = 2es2ll + |Zka2 — Ter1ll S 75 = Tht2 + Ttz — T

*
=T — Tk,
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which implies
(33) z € U(zpq1,7* — Thp)-

The induction for (29) and (30) is now completed.

Part (a) implies that sequence {t,,} is Cauchy. In view of (32) and (33) it follows
that {z,} is a Cauchy sequence in a Banach space X, and as such it converges to
some z* € U(zo,r*) (since U(zo,r*) is a closed set). By letting k — oo in (32) we
obtain F(z*) = 0.Estimate (27) follows from (26) by using standard majorization
techiques [2], [5], [6]. To show uniqueness first in U(zg,r*), let y* be a solution of
equation (1) in U(zg,r*). Using (2), (18) and (23) we obtain in turn

Tne1 — Y =2Tpn — y*— A(wo)_lF(ﬁn)
1
= —A(z) ! / [F'(y* + t(zn — y¥)) — A(z0)|(zn — ¥*)
0
and

1
34)  feni—v'll < /0 (Mo ||z* + t(zn — y*) — zol| + poldt |lzn — v"|
1
< /0 Mot ||2n — zoll + (1 — ) ly* — oll + podt |1z — v

1
< / Moltr* + (1 — t)r* + poldt |lzn — v*|
0
< (Mor™ + po) llzn — ol
<llen —y*|l,
since
(35) g = Mor* + po € [0,1)
by the choice of r*.
It follows from (34) that lim xz, = y*. But we showed lim z, = z*. Hence, we
n—oo n—od
deduce

(36) zt =y*.

Finally let y* € U(zo, R) be a solution of equation F(z) = 0, where R satisfies (28).
As in (34) we obtain

M,
BN lowr =y < | 5207+ R)+ oz = 47l < lam — 47

which leads to (36).That completes the proof of the Theorem. 0
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Remark 2.3. (a) If R = r** then condition (28) can be replaced by
(38) My < 1.

(b) It follows from (34) that the order of convergence of method (3) is at least linear
with geometric ratio gp given by (35).
(¢) Under hypotheses (6) and (7)
(39) || Alzo) M F'(2) ~ A(zo)]|| < || Alzo) ' [F'(2) — A=)]|
+ ”A(:l:o)—l[A(z) — A(.’L‘o]]l
<M+ L)z — xol| + p +1.

In view of (18) we get

(40) My<M+L,
and
(41) Bo < p+l.

Therefore, we deduce
1 1
(42) h<30-8) = ha < (1~ w)?,

but not viceversa unless if o = k, My = M + L, and ug = u + . Hence, we deduce
that (20) is weaker than condition (9). Note also that 7* < t*. Let us now show how
to use method (3) until we reach some finite N such that zy = yo will guarantee
the convergence of method (2) to a solution z* of equation F(z) = 0. We assume
that (9) does not hold for yo = zo but method (3) converges to z* (i.e., e.g. that
(20) holds true). Let us assume further that

(43) Lr*+1<1.
Let z € U(zo, r*). We will rewrite conditions (4)—(7), with z replacing zo. Indeed by
(7) and
(44) || A(zo) "1 [A(2) — A(=zo)]|| < L|lzo — 2| +!
<Lrr+l<il,

we deduce by the Banach Lemma on invertible operators [5] that A(z)~! € L(Y, X)
and

. 1 1

(45) J4() Ao < -

< .
—l—Llzo—=2|| ~1-1—-Lr*
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We can have using (5) and (45)

46) AR TF (@) - F®)| < |A(z) " A=) || | A(z0) T F'(z) - F'w)]|
K

That is, we can set

K
(47) K=o
Similarly in (6) we can have
(48) |A(z) 7 F (z) — A@)]|| £ M: llz — zoll + pz,
where,
M
(49) M=
and
(50) £

b= T
In view of (5), (6) and (45) for z € U (zq,7*).
(51)  [[A(x)[Ae) - AR

< ||A(2) " A(zo)|| [||A(zo) M [A(z) — F'(@)]]| + || Amo) M [F' () — F'(2)]]]

1
< 1_l_lr*[M”fL'—$ol|+M+K”x—z”+Ml|x0—z"+u]

<L,|z—z|| + s,

where,
K
(52) Le=1——1~
and
_ 2(Mr* 4 p)
(53) lz_l—l—Lr*'

Moreover, in view of the estimate
(54) ”A(z)_lF(z)” < HA(z)_lA(a:o)” . ”A(:vo)‘lF(z)” ,
for 2 = zy we have by (32)

(55) lAG) PR < aVn,

1
—1—Lr*
where,

K
(56) OSq=(5+M0)T*+uo<l,
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That is, we can set
1

— N,
(57) n= T
Define also b, by
(58) b, = pr +1,.

Estimate (9) will now hold for sufficiently large N since lingo q" = 0. Indeed, we
n—
must have

2max{K,, M;}¢"n <

112
(59) 1—-1—Lr* S -t
which is true for
Ina
(60) N = [Tn_q] +1

where [s] denotes the integer part of real number s, and
(=0’ (1—1-Lr)
T 2max{K,,M,}n

(d) Condition (19) can be removed as follows: Define scalar sequence {s,} by

(61)

K
(62)  Sni2 = Sn41+ E(3n+l — 8n)2 + (Mosy + p0)(Sn41 — Sn), 50 = 0,81 =1

As in [1], [2] we can easily show that sequence {s,} is nondecreasing and bounded
above by

c__2n
(63) =975
provided that there exists § € [0,2) such that:
4 M
(64) K+(2_%>77+2M0_<_6.

It follows from the proof of Theorem 2.2 that (62), (64) and s* = 7}1_}1{.10 $n < § can
replace (19), (20), r* respectively. Therefore we have a condition like(64) instead of
(20) not requiring (19). Moreover we have

s\
(65) 0<sp4t1—8n < (5) -
We noticed that (64) may be weaker that (20). However if (64) is replaced by the

stronger

(66) Kl + 52 + 200 < 8
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or equivalently
(6 —2u0)(2 - 6)

6—-46
then it is simple algebra to show that the right hand of (67) is always smaller than the
right hand side of (20) which makes (20) weaker than condition (66) (i.e., condition
(67)).
(e) It follows from (31) that condition (5) is not really needed. Indeed using only
(18) and M instead of K in (32) condition (20) can be replaced by

1
(68) a=Mon<(1- p0)?,
whereas (19) is not needed. Note that in this case K is replaced by My in (22)-(24).
If My = K conditions (20) and (68) coincide. In case My < K condition (68) is
weaker than (20). Otherwise (20) is weaker than (68). Constant K can also be
replaced by Mp in condition (64).

(67) Kn <

Let us now provide a simple numerical example in the interesting case when
(69) A(z)=F'(z) (z€ D)
to show that (68) holds but not (9).

Example 2.4. Let X =X =R, yo=1,D=[p,2—-p], p€ [0, %), and define F on
D by

(70) F(d) =d®—p.
Using (4)-(8), and (70) we obtain
(71) K=22-p),p= %(l—p),L=3~—p,M=,u=l=0, and 0 = K.
Hypothesis (9) is violated since
1
(72) h= g(l—P)(Q—p) >1 forall pelo,s).

That is, there is no guarantee that method (2) converges to z* = ¥/p.

In view of (18) we obtain My = 3 — p and o = 0. Condition (68) becomes
1 1
(73) Ka=31-p@-p <3,

which holds for all p € (420 1)
Let us now find N such that if we set yo = z = =y Newton-like method (2) will
converge to x*.
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Choose p = .45. Using (20), (23) and (35), (47) and (61) we obtain
h'y = 4675 < %,’r* = .292176088, ¢ = .745049024,

Mp = 10.0019229,7 = 1.83 and a = .069518717.

In view of (60) we obtain

(74) N =1{9.059162824] + 1 = 10.

Clearly the choice of N given by (60) is in general very pessimistic.

In particular in the case of Example 2.4 we have that z; = .816.
Notice that

| F'(z1) " F (1)) = m = .047315932.
It can easily be seen that (18) hold for z; replacing zy provided that
(75) Mo =0, and My==6.
Condition (68) becomes

45

(76) h'y = Mom = 6(.0473)5932) = .283895592 < .5.

It follows from (76) that method (2) converges by simply starting from yo = 71

instead of yp = z10.
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